GNEE - GAT Neural Event Embeddings

Related tags

Deep LearningGNEE
Overview

GNEE - GAT Neural Event Embeddings

This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Semi-Supervised Graph Attention Networks for Event Representation Learning".

Abstract: Event analysis from news and social networks is very useful for a wide range of social studies and real-world applications. Recently, event graphs have been explored to represent event datasets and their complex relationships, where events are vertices connected to other vertices that represent locations, people's names, dates, and various other event metadata. Graph representation learning methods are promising for extracting latent features from event graphs to enable the use of different classification algorithms. However, existing methods fail to meet important requirements for event graphs, such as (i) dealing with semi-supervised graph embedding to take advantage of some labeled events, (ii) automatically determining the importance of the relationships between event vertices and their metadata vertices, as well as (iii) dealing with the graph heterogeneity. In this paper, we present GNEE (GAT Neural Event Embeddings), a method that combines Graph Attention Networks and Graph Regularization. First, an event graph regularization is proposed to ensure that all graph vertices receive event features, thereby mitigating the graph heterogeneity drawback. Second, semi-supervised graph embedding with self-attention mechanism considers existing labeled events, as well as learns the importance of relationships in the event graph during the representation learning process. A statistical analysis of experimental results with five real-world event graphs and six graph embedding methods shows that GNEE obtains state-of-the-art results.

File Structure

Our method consists of a BERT text encoding and a pre-processment procedure followed by modified version of GAT (Veličković et. al - 2017, https://arxiv.org/abs/1710.10903) to the event embedding task.

In our work, we adopt and modify the PyTorch implementation of GAT, pyGAT, developed by Diego999.

.
├── datasets_runs/ -> Datasets used
├── event_graph_utils.py -> Useful functions when working with event datasets
├── layers.py -> Implementation of Graph Attention layers
├── LICENSE
├── main.py -> Execute this script to reproduce our experiments (refer to our paper for more details)
├── models.py -> Implementation of the original GAT model
├── notebooks -> Run these notebooks to reproduce all our experiments.
├── README.md
├── requirements.txt
├── train.py -> Implementation of our preprocessing, traning and testing pipelines
└── utils.py -> Useful functions used in GAT original implementation.

Reproducibility Notebooks

./notebooks
├── DeepWalk_Event_Embeddings.ipynb -> DeepWalk Benchmark
├── GAT_Event_Embeddings_+_Without_Regularization.ipynb -> GAT w/o embeddings benchmark
├── GCN_Event_Embeddings_.ipynb -> GCN Benchmark
├── GNEE_Attention_Matrices_Example.ipynb -> GNEE Attention matrices visualization
├── GNEE_Embedding_Visualization_t_SNE.ipynb -> GNEE Embeddings visualization using t-SNE
├── GNEE.ipynb -> GNEE Benchmark
├── Label_Propagation_Event_Classification.ipynb -> LP Benchmark
├── LINE_Event_Embeddings.ipynb -> LINE Benchmark
├── Node2Vec_Event_Embeddings.ipynb -> Node2Vec Benchmark
├── SDNE_Event_Embeddings.ipynb -> SDNE Benchmark
└── Struct2Vec_Event_Embeddings.ipynb -> Struct2Vec Benchmark

Hardware requirements

When running on "dense" mode (no --sparse flag), our model uses about 18 GB on GRAM. On the other hand, the sparse mode (using --sparse) uses less than 1.5 GB on GRAM, which is an ideal setup to environments such as Google Colab.

Issues/Pull Requests/Feedbacks

Please, contact the authors in case of issues / pull requests / feedbacks :)

Owner
João Pedro Rodrigues Mattos
Undergraduate Research Assistant, sponsored by FAPESP - Machine Learning | Web Development | Human Computer Interface
João Pedro Rodrigues Mattos
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022