UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

Related tags

Deep Learningunimoco
Overview

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

This is the official PyTorch implementation for UniMoCo paper:

@article{dai2021unimoco,
  author  = {Zhigang Dai and Bolun Cai and Yugeng Lin and Junying Chen},
  title   = {UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning},
  journal = {arXiv preprint arXiv:2103.10773},
  year    = {2021},
}

In UniMoCo, we generalize MoCo to a unified contrastive learning framework, which supports unsupervised, semi-supervised and full-supervised visual representation learning. Based on MoCo, we maintain a label queue to store supervised labels. With the label queue, we can construct the multi-hot target on-the-fly, which represents postives and negatives of the given query. Besides, we propose a unified contrastive loss to deal with arbitrary number of positives and negatives. There is a comparison between MoCo and UniMoCo.

ImageNet Pre-training

Data Preparation

Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

Pre-training

To perform supervised contrastive learning of ResNet-50 model on ImageNet with 8 gpus for 800 epochs, run:

python main_unimoco.py \
  -a resnet50 \
  --lr 0.03 \
  --batch-size 256 \
  --epochs 800 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp \
  --moco-t 0.2 \
  --aug-plus \
  --cos \
  [your imagenet-folder with train and val folders]

By default, the script performs full-supervised contrasitve learning.

Set --supervised-list to perform semi-supervised contrastive learning with different label ratios. For exmaple, 60% labels: --supervised-list ./label_info/60percent.txt.

This script uses all the default hyper-parameters as described in the MoCo v2.

Results

ImageNet Linear classification and COCO detection 1x schedule (R50-C4) results:

model ratios top-1 acc. top-5 acc. COCO AP
UniMoCo 0% 71.1 90.1 39.0
UniMoCo 10% 72.0 90.3 39.3
UniMoCo 30% 75.1 92.5 39.6
UniMoCo 60% 76.2 93.0 39.8
UniMoCo 100% 76.4 93.1 39.6

Check more details about linear classification and detection fine-tuning on MoCo.

Models are coming soon.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
dddzg
MSc student at SCUT
dddzg
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022