PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

Related tags

Deep LearningHAN
Overview

HAN

PyTorch code for our ECCV 2020 paper "Single Image Super-Resolution via a Holistic Attention Network"

This repository is for HAN introduced in the following paper

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu, "Single Image Super-Resolution via a Holistic Attention Network", ECCV 2020, arxiv

The code is built on RCAN (PyTorch) and tested on Ubuntu 16.04/18.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0, cuDNN5.1) with Titan X/1080Ti/Xp GPUs.

Contents


  1. Introduction
  2. Train
  3. Test
  4. Acknowledgements

Introduction

Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-of-the-art single image super- resolution approaches.

Train Prepare training data Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset.

Begin to train

(optional) Download models for our paper and place them in '/HAN/experiment/HAN'. All the models (BIX2/3/4/8, BDX3) can be downloaded from GoogleDrive. You can use scripts in file 'demo.sh' to train models for our paper.

BI, scale 2, 3, 4, 8
#HAN BI model (x2)

python main.py --template HAN --save HANx2 --scale 2 --reset --save_results --patch_size 96 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x3)

python main.py --template HAN --save HANx3 --scale 3 --reset --save_results --patch_size 144 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x4)

python main.py --template HAN --save HANx4 --scale 4 --reset --save_results --patch_size 192 --pre_train ../experiment/model/RCAN_BIX2.pt

#HAN BI model (x8)

python main.py --template HAN --save HANx8 --scale 8 --reset --save_results --patch_size 384 --pre_train ../experiment/model/RCAN_BIX2.pt

Begin to Test

Quick start

Download models for our paper and place them in '/experiment/HAN'.

Cd to '/HAN/src', run the following scripts.
#test
python main.py --template HAN --data_test Set5+Set14+B100+Urban100+Manga109 --data_range 801-900 --scale 2 --pre_train ../experiment/HAN/HAN_BIX2.pt --test_only --save HANx2_test --save_results

All the models (BIX2/3/4/8, BDX3) can be downloaded from GoogleDrive.

The whole test pipeline

1.Prepare test data.

Place the original test sets in '/dataset/x4/test'.

Run 'Prepare_TestData_HR_LR.m' in Matlab to generate HR/LR images with different degradation models.

2.Conduct image SR.

See Quick start

3.Evaluate the results.

Run 'Evaluate_PSNR_SSIM.m' to obtain PSNR/SSIM values for paper.

Acknowledgements

This code is built on RCAN. We thank the authors for sharing their codes of RCAN PyTorch version.

Owner
五维空间
五维空间
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022