Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Overview

Drone Detection using Thermal Signature

This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight thermal camera. The work is published in the International Conference of Unmanned Air Systems 2021 (ICUAS 2021) and the paper can be read in detail in ICUAS_2021_paper.

Requirements

The following are the requirements with Python 3.7.7

tensorflow==2.4.0
opencv_contrib_python==4.5.1.48
numpy==1.20.3	

Model Architecture

The following diagram highlights the architecture of model based on YOLOV3. However, unlike typical single image object detection, the model takes in the concatenation of a specified number of images in the past relative to the image of interest. This is to encapsulate the motion of the drone as an input feature for detection, a necessity given that thermal signatures of different are generally globular in shape after a certain distance depending on the fidelity of the thermal camera used. Further details can be found in ICUAS_2021_paper.

Model Architecture

Training and Testing

Clone the repository, adjust the training/testing parameters in train.py as shown and execute the code. The training data comprises of data from a controlled indoor environment while the test data contains a mixture data from indoor and outdoor environments.

# Train options
TRAIN_SAVE_BEST_ONLY        = True # saves only best model according validation loss (True recommended)
TRAIN_CLASSES               = "thermographic_data/classes.txt"
TRAIN_NUM_OF_CLASSES        = len(read_class_names(TRAIN_CLASSES))
TRAIN_MODEL_NAME            = "model_2"
TRAIN_ANNOT_PATH            = "thermographic_data/train" 
TRAIN_LOGDIR                = "log" + '/' + TRAIN_MODEL_NAME
TRAIN_CHECKPOINTS_FOLDER    = "checkpoints" + '/' + TRAIN_MODEL_NAME
TRAIN_BATCH_SIZE            = 4
TRAIN_INPUT_SIZE            = 416
TRAIN_FROM_CHECKPOINT       = False # "checkpoints/yolov3_custom"
TRAIN_LR_INIT               = 1e-4
TRAIN_LR_END                = 1e-6
TRAIN_WARMUP_EPOCHS         = 1
TRAIN_EPOCHS                = 10
TRAIN_DECAY                 = 0.8
TRAIN_DECAY_STEPS           = 50.0

# TEST options
TEST_ANNOT_PATH             = "thermographic_data/validate"
TEST_BATCH_SIZE             = 4
TEST_INPUT_SIZE             = 416
TEST_SCORE_THRESHOLD        = 0.3
TEST_IOU_THRESHOLD          = 0.45

Once the model is trained, you can test the model's predictions on images using detect_image.py. Adjust the the following parameters in detect_image.py and execute the code.

CLASSES               = "thermographic_data/classes.txt"
NUM_OF_CLASSES        = len(read_class_names(CLASSES))
MODEL_NAME            = "model_2"
CHECKPOINTS_FOLDER    = "checkpoints" + "/" + MODEL_NAME
ANNOT_PATH            = "thermographic_data/test/images/pr"
OUTPUT_PATH           = 'predicted_images/' + MODEL_NAME + "/pr"
DETECT_BATCH          = False
DETECT_WHOLE_VID      = True
BATCH_SIZE            = 1804
IMAGE_PATH            = ANNOT_PATH + "/free_3/free_3_frame_100"
INPUT_SIZE            = 416
SCORE_THRESHOLD       = 0.8
IOU_THRESHOLD         = 0.45

Similarly, you can test the model's predictions on videos using detect_video.py. Adjust the following parameters in detect_video.py and execute the code.

CLASSES               = "thermographic_data/classes.txt"
NUM_OF_CLASSES        = len(read_class_names(CLASSES))
MODEL_NAME            = "model_2"
CHECKPOINTS_FOLDER    = "checkpoints" + "/" + MODEL_NAME
ANNOT_PATH            = "raw_videos/free_2.mp4"
OUTPUT_PATH           = 'predicted_videos/' + MODEL_NAME 
INPUT_SIZE            = 416
SCORE_THRESHOLD       = 0.8
IOU_THRESHOLD         = 0.45

Examples of predictions

An example of correct drone detection in indoor environment shown below.

Indoor Detection

An example of correct drone detection in outdoor environment shown below.

Outdoor Prediction

Video of model predictions shown in indoor environment can be found here.

Owner
Chong Yu Quan
Chong Yu Quan
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022