A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

Overview

Academic-DeepNeuralNetsFromScratch

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

This project was constructed for the Introduction to Machine Learning course, class 605.649 section 84 at Johns Hopkins University. FranceLab4 is a machine learning toolkit that implements several algorithms for classification and regression tasks. Specifically, the toolkit coordinates a linear network, a logistic regressor, an autoencoder, and a neural network that implements backpropagation; it also leverages data structures built in the preceding labs. FranceLab4 is a software module written in Python 3.7 that facilitates such algorithms.

##Notes for Graders All files of concern for this project (with the exception of main.py) may be found in the Linear_Network, Logistic_Regression, and Neural_Network folders. I kept most of my files from Projects 1, 2, and 3 because I ended up using cross validation, encoding, and other helper methods. However, these three folders contains the neural network algorithms of interest.

I have created blocks of code for you to test and run each algorithm if you choose to do so. In __main__.py scroll to the bottom and find the main function. Simply comment or uncomment blocks of code to test if desired.

Each neural network and autoencoder constructed are sub-classed / inherited from the NeuralNet class in neural_net.py. I simply initialize the class differently in order to construct an autoencoder, a feed-forward neural network, or a combination of both.

Data produced in my paper were run with KFCV. However within the main program, you may notice that the number of folds k has been reduced to 2 to make the analysis quicker and the console output easier to follow.

The construction of a linear network begins on line 84 in __main__.py.

The construction of a logistic regressor begins on line 102 in __main__.py.

The construction of an autoencoder only begins on line 128 in __main__.py.

The construction of a feed-forward neural network only begins on line 141 in __main__.py.

The construction of an autoencoder that is trained, the decoder removed, and the encoder attached to a new hidden layer with a prediction layer attached to form a new neural network begins on line 221 in __main__.py.

The code for the weight updates and backward and forward propagation may be found in the following files within the Neural_Network folder:

  • layer.py
  • optimizer_function.py
  • neural_net.py

__main__.py is the driver behind importing the dataset, cleaning the data, coordinating KFCV, and initializing each of the neural network algorithms.

Running FranceLab4

  1. Ensure Python 3.7 is installed on your computer.
  2. Navigate to the Lab4 directory. For example, cd User\Documents\PythonProjects\FranceLab4. Do NOT cd into the Lab4 module.
  3. Run the program as a module: python3 -m Lab4.
  4. Input and output files ar located in the io_files subdirectory.

FranceLab4 Usage

usage: python3 -m Lab4
Owner
Kordel K. France
Artificial Intelligence Engineer, Algorithmic Trader. I build software that finds order within chaos.
Kordel K. France
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023