Prometheus exporter for Cisco Unified Computing System (UCS) Manager

Overview

prometheus-ucs-exporter

Overview

Use metrics from the UCS API to export relevant metrics to Prometheus

This repository is a fork of Drew Stinnett's original exporter at oit-ssi-systems/prometheus-ucs-exporter.

Modifications made include:

  • Added production server (FastAPI)
  • Added additional metrics
  • Added Grafana dashboard
  • Minor fixes and refactorings

Install the Grafana dashboard by importing the JSON file grafana/dashboard.json.

Cisco UCSM Grafana dashboard

Installation

Build and run with Docker:

docker build -t prometheus-ucs-exporter .

docker run -p 3001:3001 -e PORT=3001 \
-e PROM_UCS_USERNAME='ucs-mydomain\username' \
-e PROM_UCS_PASSWORD='passw0rd' \
prometheus-ucs-exporter

Fetch metrics:

curl http://localhost:3001/metrics?domain=my-domain.example.com

Note: Metrics are fetched in a background worker after an initial scrape, since UCSM can be slow to respond. Continue polling the /metrics endpoint until metrics are returned.

Usage

docker pull ghcr.io/marshallwace/prometheus-ucs-exporter:0.0.2

SPDX update

pip install --user pipx

pipx run reuse addheader --copyright "2022 Marshall Wace <[email protected]>" --license "GPL-3.0-only" *.py 
You might also like...
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Blender scripts for computing geodesic distance
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. It applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems and solves each subproblem via DROO algorithm. It includes:

Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

Comments
  • How to support polling multiple UCS Domains

    How to support polling multiple UCS Domains

    Is it possible to support polling of multiple UCS domains using a single prometheus instance or is it better to dedicate a prmetheus container to each UCS domain?

    opened by dwebr 1
  • UCS System returns

    UCS System returns "not-applicable" for kernel_mem_total and kernel_mem_free stats

    Issue: UCS running version 4.2(1m)B returns "not-applicable" for kernel_mem_total and kernel_mem_free stats which results in prometheus throwing errors during polling.

    Work around: comment out the following statements in the swsystem.py file.

    kernel_mem_total.labels(self.domain, switch).set(int(item.kernel_mem_total))
    kernel_mem_free.labels(self.domain, switch).set(int(item.kernel_mem_free))
    

    Example Output

    /repos/prometheus-ucs-exporter/scripts$ ./explore.py query-classid swSystemStats
    
    Managed Object                  :       SwSystemStats
    --------------
    class_id                        :SwSystemStats
    child_action                    :None
    correctable_parity_error        :not-applicable
    correctable_parity_error_avg    :not-applicable
    correctable_parity_error_max    :not-applicable
    correctable_parity_error_min    :not-applicable
    dn                              :sys/switch-B/sysstats
    intervals                       :58982460
    kernel_mem_free                 :not-applicable
    kernel_mem_free_avg             :not-applicable
    kernel_mem_free_max             :not-applicable
    kernel_mem_free_min             :not-applicable
    kernel_mem_total                :not-applicable
    kernel_mem_total_avg            :not-applicable
    kernel_mem_total_max            :not-applicable
    kernel_mem_total_min            :not-applicable
    load                            :2.360000
    load_avg                        :2.413333
    load_max                        :2.620000
    load_min                        :2.130000
    mem_available                   :52264
    mem_available_avg               :52278
    mem_available_max               :52302
    mem_available_min               :52264
    mem_cached                      :11591
    mem_cached_avg                  :11576
    mem_cached_max                  :11591
    mem_cached_min                  :11563
    rn                              :sysstats
    sacl                            :None
    status                          :None
    suspect                         :no
    thresholded                     :
    time_collected                  :2022-09-24T10:13:48.368
    update                          :131081
    
    
    
    Managed Object                  :       SwSystemStats
    --------------
    class_id                        :SwSystemStats
    child_action                    :None
    correctable_parity_error        :not-applicable
    correctable_parity_error_avg    :not-applicable
    correctable_parity_error_max    :not-applicable
    correctable_parity_error_min    :not-applicable
    dn                              :sys/switch-A/sysstats
    intervals                       :58982460
    kernel_mem_free                 :not-applicable
    kernel_mem_free_avg             :not-applicable
    kernel_mem_free_max             :not-applicable
    kernel_mem_free_min             :not-applicable
    kernel_mem_total                :not-applicable
    kernel_mem_total_avg            :not-applicable
    kernel_mem_total_max            :not-applicable
    kernel_mem_total_min            :not-applicable
    load                            :3.820000
    load_avg                        :2.701667
    load_max                        :3.820000
    load_min                        :2.090000
    mem_available                   :52062
    mem_available_avg               :52050
    mem_available_max               :52062
    mem_available_min               :52036
    mem_cached                      :11060
    mem_cached_avg                  :11068
    mem_cached_max                  :11083
    mem_cached_min                  :11060
    rn                              :sysstats
    sacl                            :None
    status                          :None
    suspect                         :no
    thresholded                     :
    time_collected                  :2022-09-24T10:14:32.366
    update                          :131078
    
    bug 
    opened by dwebr 0
Releases(v0.0.2)
Owner
Marshall Wace
Marshall Wace
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022