This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

Overview

private-transformers

This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.


What is this? Why an extra codebase?

  • This codebase provides a privacy engine that builds off Opacus, but works way more smoothly with Hugging Face's transformers library.
  • Additionally, we support the ghost clipping technique (see Section 4 of this preprint on how it works) which allows privately training large transformers with considerably reduced memory cost -- in many cases, almost as light as non-private training -- at a modest run-time overhead.
  • With this codebase, we have fine-tuned very large pretrained models, yielding some of the best performing differentially private NLP models to date. Some of these models have performance matching strong non-private baseline approaches. We see strong empirical evidence that highly performant DP NLP models could be built on modest datasets.

Installation

Make sure you have python>=3.8; run the following command:

pip install git+https://github.com/lxuechen/private-transformers.git

To check the package is installed properly, be sure to run the test suite (requires pytest and a GPU) via the following command:

pytest -s tests

Usage

Basic usage

Privately training Hugging Face transformers with our codebase simply consists of 4 steps:

  1. Create your favourite transformer model and optimizer; attach this optimizer to a PrivacyEngine
  2. Compute a per-example loss (1-D tensor) for a mini-batch of data
  3. Pass the loss to optimizer.step or optimizer.virtual_step as a keyword argument
  4. Repeat from step 2

Below is a quick example:

import transformers, torch
from private_transformers import PrivacyEngine
import torch.nn.functional as F

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = transformers.GPT2LMHeadModel.from_pretrained('distilgpt2').to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-4)
privacy_engine = PrivacyEngine(
    model,
    batch_size=10,
    sample_size=50000,
    epochs=3,
    max_grad_norm=0.1,
    target_epsilon=3,
)
privacy_engine.attach(optimizer)

batch_size, seq_len = 10, 20
# Inputs are batch-first format, i.e., the first dimension of tensors must be batch dimension.
input_ids = torch.randint(size=[batch_size, seq_len], low=0, high=100, device=device)
# Calling `.train()` is very important; otherwise underlying forward and backward hooks don't run.
model.train()
outputs = model(input_ids=input_ids, return_dict=True)
labels = input_ids[:, 1:, ]
logits = outputs.logits[:, :-1, :].permute(0, 2, 1)
# `loss` is a 1-D tensor of shape (batch_size,).
loss = F.cross_entropy(logits, labels, reduction="none").mean(dim=1)
# This step is different from existing workflows: 
#   Don't call `loss.backward`; leave it to `optimizer.step` to handle backward.
optimizer.step(loss=loss)

The biggest differences compared to Opacus are:

  • We require the per-example loss (a 1-D tensor) be passed into optimizer.step (or optimizer.virtual_step)
  • The per-example loss must be passed in as a keyword argument.
  • loss.backward() shouldn't be called on the user end; it's called internally in optimizer.step ( or optimizer.virtual_step).
  • Inputs should be in batch-first format; there isn't a toggle to switch between different formats in the engine.

Ghost clipping: memory saving differentially private learning

Turning on ghost clipping requires changing only 1 line. You should notice a drastic reduction in peak GPU memory usage once this is turned on, at a potential cost of slower training speed. One might find this especially useful when constrained to only use older GPUs with small VRAMs or fitting super large models.

import transformers, torch
from private_transformers import PrivacyEngine

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = transformers.GPT2LMHeadModel.from_pretrained('distilgpt2').to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-4)
privacy_engine = PrivacyEngine(
    model,
    batch_size=10,
    sample_size=50000,
    epochs=3,
    max_grad_norm=0.1,
    target_epsilon=3,
    ghost_clipping=True,  # The only change you need to make!
)
privacy_engine.attach(optimizer)

We ran stringent numerical tests to ensure the double-backward implementation is correct. Check out files in the tests folder for more on this.

Examples

Code in the examples folder roughly reproduces our results for the table-to-text and classification tasks. There may be some minor discrepancies, since hyperparameters there aren't exactly what's used in the paper. Nevertheless, it should be sufficient to get things started. Detailed instructions are in the readme file of each subfolder.

Currently supported Hugging Face models

Not all models in the Hugging Face library are supported. The main additional work here is to

  1. support per-example gradients for bespoke modules (e.g., T5LayerNorm), and
  2. ensure position_ids are repeated.

We plan to support more models in the future if there's such a need. Feel free to open an issue if you may want to try out specific models that aren't in the current list.

FAQ

I wrote some answers to potential questions here.

Acknowledgements

It would have been impossible to develop this codebase without cool past works and existing codebases. We roughly follow the PrivacyEngine design in Opacus==0.13.0. We directly use an off-the-shelf package for tightly tracking tradeoff functions while composing multiple private mechanisms.

Disclaimer

  • This codebase is not yet production-grade, e.g., cryptographically secure PRNGs are required for sampling noise -- our codebase currently does not use these strong PRNGs.
  • This codebase is born out of the need to experiment with various things for differentially private NLP in rapidly succession. I've tried my best to write clean code, though parts of this codebase may be less tidy than I had hoped given the extremely tight timeline.

Citation

If you found this codebase useful in your research, please consider citing:

@misc{li2021large,
      title={Large Language Models Can Be Strong Differentially Private Learners}, 
      author={Xuechen Li and Florian Tramèr and Percy Liang and Tatsunori Hashimoto},
      year={2021},
      eprint={2110.05679},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Comments
  • Support BART model

    Support BART model

    Hi, I'm trying to apply your code in BART model. But I got the error like the below:

    ValueError: Ghost clipping does not support parameter sharing. Parameter sharing may be due to default parameter sharing between lm_head and embedding.Please use a model without parameter sharing for ghost clipping.
    

    Does it not support BART model yet??

    opened by SeolhwaLee 7
  • Set another seed won't change the result

    Set another seed won't change the result

    Hi Xuechen,

    I have another issue with the training seed. I would like to relax the random seed so that I can get some statistical results. Tried many different ways but even comment out the set_seed() function, the eva acc is the same until the last digit. May I ask how to relax the random seed? I'm doing experiments on examples/classification.

    Thanks!

    opened by JunyiZhu-AI 6
  • Customize loss function / adding regularizer under privacy setting?

    Customize loss function / adding regularizer under privacy setting?

    Hi, thanks again for the great work and the codebase!

    I have a question -- how I'd want to customize loss function in the codebase? I've been trying to do that, e.g. adding a per-example L1 regularization term to vector_loss in trainer, but I didn't manage to get it running after several attempts.

    There's a related discussion/PR in Opacus codebase https://github.com/pytorch/opacus/issues/249.

    However, there're a few tricky things I can see: -- In private-transformers, backward() behavior is not managed on the user end. -- also, 1-D vector_loss is required for private gradient update - optimizer.stepor optimizer.virtual_step

    My intuition is that I can add to vector_loss (per-example loss) at this line before the loss gets passed to the privacy engine.

    However I am afraid privacy concern is also an issue. I am aware of that Private-Transformers overrides compute_loss() in HF trainer, to exclude regularization terms that might mess up with privacy accounting.

    Sorry my question is not super detailed but I hope this makes sense and really appreciate for any comments.

    Thank you!

    opened by shi-kejian 4
  • Using dataloader with fixed batch size

    Using dataloader with fixed batch size

    Hi, thanks for providing this codebase!

    So for a while I've been using Opacus to experiment with DP-SGD and RoBERTa, but I wanted to check out your PrivacyEngine, mainly because of the training speed and memory optimizations. With Opacus, I always trained with their UniformWithReplacementSampler for accurate RDP accounting and as far as I can tell, you're training with fixed size batches in your examples. I'm wondering if there's a reason the UniformWithReplacementSampler isn't needed in your codebase anymore, and if the uniform sampler is compatible with your modified PrivacyEngine because the optimizer needs to be able to deal with variations in batch size?

    opened by xplip 4
  • How to set max_compositions

    How to set max_compositions

    Hi Chen, do you know how to set the max_compositions/steps param? The default at https://github.com/lxuechen/private-transformers/blob/684e27fcd9978539fbabc357c7ea506c0353c771/private_transformers/privacy_utils/privacy_engine.py#L148 is 0 but would raise an error

    private-transformers/private_transformers/privacy_utils/accounting/gdp_accounting.py:33: RuntimeWarning: invalid value encountered in double_scalars return norm.cdf(-eps / mu + mu / 2) - np.exp(eps) * norm.cdf(-eps / mu - mu / 2)
    rv_accountant/accountant.py:55: RuntimeWarning: divide by zero encountered in double_scalars mesh_size = 2*eps_error / np.sqrt(2*max_compositions*np.log(2/eta0))
    
    opened by hlzhang109 3
  • Setting small target epsilon like 0.1 fails training

    Setting small target epsilon like 0.1 fails training

    Hi, @lxuechen I tried to set epsilon as 0.1 on SST-2, but it results in a large noise_multiplier: 20853.95 and fails the training where the accuracy is near 0.5 However, setting epsilon as 1 works well. Any idea about this?

    opened by LinkToPast1900 3
  • Private gradient seemingly has been overwritten by non-private gradient.

    Private gradient seemingly has been overwritten by non-private gradient.

    Hi Xuechen, thanks for providing this codebase!

    I tried tweaking the code in examples/classification but the network does not perform as expected. In particular, I tried zeroing out all gradient by this command in _step() and _ghost_step() functions in privacy_engine.py:

    param.grad /= self.batch_size
    param.grad.mul_(0)
    

    After adding this multiplication the network has been trained as normally. And because with the same seed, the network has been even trained to give out the same eval acc. Could you reproduce this result at your private repo? If it behaves like this, then I suppose that the private gradient has been overwritten by the non-private one.

    opened by JunyiZhu-AI 3
  • Questions about sigma search and epsilon from composed tradeoff functions

    Questions about sigma search and epsilon from composed tradeoff functions

    (Making a new issue for this because you probably weren't notified of my comment in the closed original issue)

    Sorry for having to reopen this, but I do have two more (perhaps related) questions after all and would really appreciate if you could help clarify them.

    1. When using the automated sigma search (based on a specified target epsilon and N epochs), the final epsilon computed by the PrivacyEngine after training for N epochs is always much higher than the target epsilon, so it seems that the sigma chosen by get_sigma_from_rdp is too high. This also happens when I run the sentence classification and the table2test examples in the repo. E.g., instead of my target epsilon 8, I will end up with something like epsilon 10-11. How did you get your final epsilon to match the target epsilon in the experiments in your paper?

    2. How do you compute the converted epsilon from composed tradeoff functions when let's say training SST-2 with the default hyperparameters from the examples? Do you reduce the num_compositions=1000 in _eps_from_glw to something way lower than 1000 because the script only runs for ~400 optimization steps and would otherwise always throw the Numerical composition of tradeoff functions failed! Double check privacy parameters. error?

    Originally posted by @xplip in https://github.com/lxuechen/private-transformers/issues/7#issuecomment-987020758

    opened by xplip 3
  • What is the best way to handle large models?

    What is the best way to handle large models?

    Hi all, I was trying to fine-tune GPT-J 6B but I encounter Out Of Memory errors if I use a single-gpu, for non-private training I managed to solve them by using deepspeed but it seems that I cannot use that with opacus or with this codebase. Do you know how I could solve this problem? Thank you in advance:)

    opened by Pier297 2
  • No such file or directory

    No such file or directory

    I want to finetune qqp and here comes an error:

    File "/private-transformers-main/examples/classification/run_classification.py", line 545, in main train_dataset = FewShotDataset(data_args, tokenizer=tokenizer, mode="train", use_demo=use_demo) File "/private-transformers-main/examples/classification/src/dataset.py", line 377, in init with FileLock(lock_path): File "/home/anaconda3/envs/fuck/lib/python3.8/site-packages/filelock/_api.py", line 214, in enter self.acquire() File "/home/anaconda3/envs/fuck/lib/python3.8/site-packages/filelock/_api.py", line 170, in acquire self._acquire() File "/home/anaconda3/envs/fuck/lib/python3.8/site-packages/filelock/_unix.py", line 35, in _acquire fd = os.open(self._lock_file, open_mode) FileNotFoundError: [Errno 2] No such file or directory: 'classification/data/original/QQP/cached_train_RobertaTokenizer_256_qqp_few_shot.lock'

    how can I get this file? thanks.

    opened by trestad 2
  • [DistilBERT] RuntimeError: stack expects each tensor to be equal size

    [DistilBERT] RuntimeError: stack expects each tensor to be equal size

    Hi, @lxuechen, thanks for your repo.

    I met a problem as follows when I tied to finetune DistilBERT. Both BERT and Roberta work well. Any idea about this? Thanks!

    Traceback (most recent call last): ... File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 360, in step self._ghost_step(loss=kwargs.pop("loss")) File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 261, in _ghost_step self._ghost_helper(loss) File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 334, in _ghost_helper coef_sample = self.get_coef_sample() File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 348, in get_coef_sample norm_sample = self.get_norm_sample() File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 343, in get_norm_sample norm_sample = torch.stack([param.norm_sample for name, param in self.named_params], dim=0).norm(2, dim=0) RuntimeError: stack expects each tensor to be equal size, but got [50] at entry 0 and [1] at entry 1

    (50 is my batch size)

    opened by LinkToPast1900 1
  • v0.3.0 fixes

    v0.3.0 fixes

    Non-structural fixes.

    • [ ] Convert to make_private style to avoid bad syntax highlighting during static analysis
    • [ ] Improve the cleanliness of examples
    • [ ] Refactor test file and use functorch to simplify ground truth gradients' logic
    • [ ] Don't compute per-sample gradients for weights which don't require gradients
    • [ ] Use the new smart resizer for tokenizer and model
    • [ ] Refactor decoding to use new left padding based construction
    opened by lxuechen 0
Releases(v0.2.3)
Owner
Xuechen Li
learning to learn
Xuechen Li
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022