Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Overview

Semantic search through Wikipedia with the Weaviate vector search engine

Weaviate is an open source vector search engine with build-in vectorization and question answering modules. We imported the complete English language Wikipedia article dataset into a single Weaviate instance to conduct semantic search queries through the Wikipedia articles, besides this, we've made all the graph relations between the articles too. We have made the import scripts, pre-processed articles, and backup available so that you can run the complete setup yourself.

In this repository, you'll find the 3-steps needed to replicate the import, but there are also downlaods available to skip the first two steps.

If you like what you see, a on the Weaviate Github repo or joining our Slack is appreciated.

Additional links:

Frequently Asked Questions

Q A
Can I run this setup with a non-English dataset? Yes – first, you need to go through the whole process (i.e., start with Step 1). E.g., if you want French, you can download the French version of Wikipedia like this: https://dumps.wikimedia.org/frwiki/latest/frwiki-latest-pages-articles.xml.bz2 (note that en if replaced with fr). Next, you need to change the Weaviate vectorizer module to an appropriate language. You can choose an OOTB language model as outlined here or add your own model as outlined here.
Can I run this setup with all languages? Yes – you can follow two strategies. You can use a multilingual model or extend the Weaviate schema to store different languages with different classes. The latter has the upside that you can use multiple vectorizers (e.g., per language) or a more elaborate sharding strategy. But in the end, both are possible.
Can I run this with Kubernetes? Of course, you need to start from Step 2. But if you follow the Kubernetes set up in the docs you should be good :-)
Can I run this with my own data? Yes! This is just a demo dataset, you can use any data you have and like. Go to the Weaviate docs or join our Slack to get started.

Acknowledgments

Stats

description value
Articles imported 11.348.257
Paragaphs imported 27.377.159
Graph cross references 125.447.595
Wikipedia version truthy October 9th, 2021
Machine for inference 12 CPU – 100 GB RAM – 250Gb SSD – 1 x NVIDIA Tesla P4
Weaviate version v1.7.2
Dataset size 122GB

Example queries

Example semantic search queries in Weaviate's GraphQL interface

Import

There are 3-steps in the import process. You can also skip the first two and directly import the backup

Step 1: Process the Wikipedia dump

In this process, the Wikipedia dataset is processed and cleaned (the markup is removed, HTML tags are removed, etc). The output file is a JSON Lines document that will be used in the next step.

Process from the Wikimedia dump:

$ cd step-1
$ wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
$ bzip2 -d filename.bz2
$ pip3 install -r requirements.txt
$ python3 process.py

The import takes a few hours, so probably you want to do something like:

$ nohup python3 -u process.py &

You can also download the processed file from October 9th, 2021, and skip the above steps

$ wget https://storage.googleapis.com/semi-technologies-public-data/wikipedia-en-articles.json.gz
$ gunzip wikipedia-en-articles.json.gz

Step 2: Import the dataset and vectorized the content

Weaviate takes care of the complete import and vectorization process but you'll need some GPU and CPU muscle to achieve this. Important to bear in mind is that this is only needed on import time. If you don't want to spend the resources on doing the import, you can go to the next step in the process and download the Weaviate backup. The machine needed for inference is way cheaper.

We will be using a single Weaviate instance, but four Tesla T4 GPUs that we will stuff with 8 models each. To efficiently do this, we are going to add an NGINX load balancer between Weaviate and the vectorizers.

Weaviate Wikipedia import architecture with transformers and vectorizers

  • Every Weaviate text2vec-module will be using a multi-qa-MiniLM-L6-cos-v1 sentence transformer.
  • The volume is mounted outside the container to /var/weaviate. This allows us to use this folder as a backup that can be imported in the next step.
  • Make sure to have Docker-compose with GPU support installed.
  • The import scripts assumes that the JSON file is called wikipedia-en-articles.json.
$ cd step-2
$ docker-compose up -d
$ pip3 install -r requirements.txt
$ python3 import.py

The import takes a few hours, so probably you want to do something like:

$ nohup python3 -u import.py &

After the import is done, you can shut down the Docker containers by running docker-compose down.

You can now query the dataset!

Step 3: Load from backup

Start here if you want to work with a backup of the dataset without importing it

You can now run the dataset! We would advise running it with 1 GPU, but you can also run it on CPU only (without Q&A). The machine you need for inference is significantly smaller.

Note that Weaviate needs some time to import the backup (if you use the setup mentioned above +/- 15min). You can see the status of the backup in the docker logs of the Weaviate container.

# clone this repository
$ git clone https://github.com/semi-technologies/semantic-search-through-Wikipedia-with-Weaviate/
# go into the backup dir
$ cd step-3
# download the Weaviate backup
$ curl https://storage.googleapis.com/semi-technologies-public-data/weaviate-1.8.0-rc.2-backup-wikipedia-py-en-multi-qa-MiniLM-L6-cos.tar.gz -O
# untar the backup (112G unpacked)
$ tar -xvzf weaviate-1.8.0-rc.2-backup-wikipedia-py-en-multi-qa-MiniLM-L6-cos.tar.gz
# get the unpacked directory
$ echo $(pwd)/var/weaviate
# use the above result (e.g., /home/foobar/var/weaviate)
#   update volumes in docker-compose.yml (NOT PERSISTENCE_DATA_PATH!) to the above output
#   (e.g., 
#     volumes:
#       - /home/foobar/var/weaviate:/var/lib/weaviate
#   )    
#
#   With 12 CPUs this process takes about 12 to 15 minutes to complete.
#   The Weaviate instance will be available directly, but the cache is pre-filling in this timeframe

With GPU

$ cd step-3
$ docker-compose -f docker-compose-gpu.yml up -d

Without GPU

$ cd step-3
$ docker-compose -f docker-compose-no-gpu.yml up -d

Example queries

"Where is the States General of The Netherlands located?" try it live!

##
# Using the Q&A module I
##
{
  Get {
    Paragraph(
      ask: {
        question: "Where is the States General of The Netherlands located?"
        properties: ["content"]
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
          certainty
        }
      }
      content
      title
    }
  }
}

"What was the population of the Dutch city Utrecht in 2019?" try it live!

##
# Using the Q&A module II
##
{
  Get {
    Paragraph(
      ask: {
        question: "What was the population of the Dutch city Utrecht in 2019?"
        properties: ["content"]
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
          certainty
        }
      }
      content
      title
    }
  }
}

About the concept "Italian food" try it live!

##
# Generic question about Italian food
##
{
  Get {
    Paragraph(
      nearText: {
        concepts: ["Italian food"]
      }
      limit: 50
    ) {
      content
      order
      title
      inArticle {
        ... on Article {
          title
        }
      }
    }
  }
}

"What was Michael Brecker's first saxophone?" in the Wikipedia article about "Michael Brecker" try it live!

##
# Mixing scalar queries and semantic search queries
##
{
  Get {
    Paragraph(
      ask: {
        question: "What was Michael Brecker's first saxophone?"
        properties: ["content"]
      }
      where: {
        operator: Equal
        path: ["inArticle", "Article", "title"]
        valueString: "Michael Brecker"
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
        }
      }
      content
      order
      title
      inArticle {
        ... on Article {
          title
        }
      }
    }
  }
}

Get all Wikipedia graph connections for "jazz saxophone players" try it live!

##
# Mixing semantic search queries with graph connections
##
{
  Get {
    Paragraph(
      nearText: {
        concepts: ["jazz saxophone players"]
      }
      limit: 25
    ) {
      content
      order
      title
      inArticle {
        ... on Article { # <== Graph connection I
          title
          hasParagraphs { # <== Graph connection II
            ... on Paragraph {
              title
            }
          }
        }
      }
    }
  }
}
Owner
SeMI Technologies
SeMI Technologies creates database software like the Weaviate vector search engine
SeMI Technologies
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 04, 2023
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
Conditional Transformer Language Model for Controllable Generation

CTRL - A Conditional Transformer Language Model for Controllable Generation Authors: Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong,

Salesforce 1.7k Dec 28, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022