Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Overview

Semantic search through Wikipedia with the Weaviate vector search engine

Weaviate is an open source vector search engine with build-in vectorization and question answering modules. We imported the complete English language Wikipedia article dataset into a single Weaviate instance to conduct semantic search queries through the Wikipedia articles, besides this, we've made all the graph relations between the articles too. We have made the import scripts, pre-processed articles, and backup available so that you can run the complete setup yourself.

In this repository, you'll find the 3-steps needed to replicate the import, but there are also downlaods available to skip the first two steps.

If you like what you see, a on the Weaviate Github repo or joining our Slack is appreciated.

Additional links:

Frequently Asked Questions

Q A
Can I run this setup with a non-English dataset? Yes – first, you need to go through the whole process (i.e., start with Step 1). E.g., if you want French, you can download the French version of Wikipedia like this: https://dumps.wikimedia.org/frwiki/latest/frwiki-latest-pages-articles.xml.bz2 (note that en if replaced with fr). Next, you need to change the Weaviate vectorizer module to an appropriate language. You can choose an OOTB language model as outlined here or add your own model as outlined here.
Can I run this setup with all languages? Yes – you can follow two strategies. You can use a multilingual model or extend the Weaviate schema to store different languages with different classes. The latter has the upside that you can use multiple vectorizers (e.g., per language) or a more elaborate sharding strategy. But in the end, both are possible.
Can I run this with Kubernetes? Of course, you need to start from Step 2. But if you follow the Kubernetes set up in the docs you should be good :-)
Can I run this with my own data? Yes! This is just a demo dataset, you can use any data you have and like. Go to the Weaviate docs or join our Slack to get started.

Acknowledgments

Stats

description value
Articles imported 11.348.257
Paragaphs imported 27.377.159
Graph cross references 125.447.595
Wikipedia version truthy October 9th, 2021
Machine for inference 12 CPU – 100 GB RAM – 250Gb SSD – 1 x NVIDIA Tesla P4
Weaviate version v1.7.2
Dataset size 122GB

Example queries

Example semantic search queries in Weaviate's GraphQL interface

Import

There are 3-steps in the import process. You can also skip the first two and directly import the backup

Step 1: Process the Wikipedia dump

In this process, the Wikipedia dataset is processed and cleaned (the markup is removed, HTML tags are removed, etc). The output file is a JSON Lines document that will be used in the next step.

Process from the Wikimedia dump:

$ cd step-1
$ wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
$ bzip2 -d filename.bz2
$ pip3 install -r requirements.txt
$ python3 process.py

The import takes a few hours, so probably you want to do something like:

$ nohup python3 -u process.py &

You can also download the processed file from October 9th, 2021, and skip the above steps

$ wget https://storage.googleapis.com/semi-technologies-public-data/wikipedia-en-articles.json.gz
$ gunzip wikipedia-en-articles.json.gz

Step 2: Import the dataset and vectorized the content

Weaviate takes care of the complete import and vectorization process but you'll need some GPU and CPU muscle to achieve this. Important to bear in mind is that this is only needed on import time. If you don't want to spend the resources on doing the import, you can go to the next step in the process and download the Weaviate backup. The machine needed for inference is way cheaper.

We will be using a single Weaviate instance, but four Tesla T4 GPUs that we will stuff with 8 models each. To efficiently do this, we are going to add an NGINX load balancer between Weaviate and the vectorizers.

Weaviate Wikipedia import architecture with transformers and vectorizers

  • Every Weaviate text2vec-module will be using a multi-qa-MiniLM-L6-cos-v1 sentence transformer.
  • The volume is mounted outside the container to /var/weaviate. This allows us to use this folder as a backup that can be imported in the next step.
  • Make sure to have Docker-compose with GPU support installed.
  • The import scripts assumes that the JSON file is called wikipedia-en-articles.json.
$ cd step-2
$ docker-compose up -d
$ pip3 install -r requirements.txt
$ python3 import.py

The import takes a few hours, so probably you want to do something like:

$ nohup python3 -u import.py &

After the import is done, you can shut down the Docker containers by running docker-compose down.

You can now query the dataset!

Step 3: Load from backup

Start here if you want to work with a backup of the dataset without importing it

You can now run the dataset! We would advise running it with 1 GPU, but you can also run it on CPU only (without Q&A). The machine you need for inference is significantly smaller.

Note that Weaviate needs some time to import the backup (if you use the setup mentioned above +/- 15min). You can see the status of the backup in the docker logs of the Weaviate container.

# clone this repository
$ git clone https://github.com/semi-technologies/semantic-search-through-Wikipedia-with-Weaviate/
# go into the backup dir
$ cd step-3
# download the Weaviate backup
$ curl https://storage.googleapis.com/semi-technologies-public-data/weaviate-1.8.0-rc.2-backup-wikipedia-py-en-multi-qa-MiniLM-L6-cos.tar.gz -O
# untar the backup (112G unpacked)
$ tar -xvzf weaviate-1.8.0-rc.2-backup-wikipedia-py-en-multi-qa-MiniLM-L6-cos.tar.gz
# get the unpacked directory
$ echo $(pwd)/var/weaviate
# use the above result (e.g., /home/foobar/var/weaviate)
#   update volumes in docker-compose.yml (NOT PERSISTENCE_DATA_PATH!) to the above output
#   (e.g., 
#     volumes:
#       - /home/foobar/var/weaviate:/var/lib/weaviate
#   )    
#
#   With 12 CPUs this process takes about 12 to 15 minutes to complete.
#   The Weaviate instance will be available directly, but the cache is pre-filling in this timeframe

With GPU

$ cd step-3
$ docker-compose -f docker-compose-gpu.yml up -d

Without GPU

$ cd step-3
$ docker-compose -f docker-compose-no-gpu.yml up -d

Example queries

"Where is the States General of The Netherlands located?" try it live!

##
# Using the Q&A module I
##
{
  Get {
    Paragraph(
      ask: {
        question: "Where is the States General of The Netherlands located?"
        properties: ["content"]
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
          certainty
        }
      }
      content
      title
    }
  }
}

"What was the population of the Dutch city Utrecht in 2019?" try it live!

##
# Using the Q&A module II
##
{
  Get {
    Paragraph(
      ask: {
        question: "What was the population of the Dutch city Utrecht in 2019?"
        properties: ["content"]
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
          certainty
        }
      }
      content
      title
    }
  }
}

About the concept "Italian food" try it live!

##
# Generic question about Italian food
##
{
  Get {
    Paragraph(
      nearText: {
        concepts: ["Italian food"]
      }
      limit: 50
    ) {
      content
      order
      title
      inArticle {
        ... on Article {
          title
        }
      }
    }
  }
}

"What was Michael Brecker's first saxophone?" in the Wikipedia article about "Michael Brecker" try it live!

##
# Mixing scalar queries and semantic search queries
##
{
  Get {
    Paragraph(
      ask: {
        question: "What was Michael Brecker's first saxophone?"
        properties: ["content"]
      }
      where: {
        operator: Equal
        path: ["inArticle", "Article", "title"]
        valueString: "Michael Brecker"
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
        }
      }
      content
      order
      title
      inArticle {
        ... on Article {
          title
        }
      }
    }
  }
}

Get all Wikipedia graph connections for "jazz saxophone players" try it live!

##
# Mixing semantic search queries with graph connections
##
{
  Get {
    Paragraph(
      nearText: {
        concepts: ["jazz saxophone players"]
      }
      limit: 25
    ) {
      content
      order
      title
      inArticle {
        ... on Article { # <== Graph connection I
          title
          hasParagraphs { # <== Graph connection II
            ... on Paragraph {
              title
            }
          }
        }
      }
    }
  }
}
Owner
SeMI Technologies
SeMI Technologies creates database software like the Weaviate vector search engine
SeMI Technologies
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Spokestack is a library that allows a user to easily incorporate a voice interface into any Python application with a focus on embedded systems.

Welcome to Spokestack Python! This library is intended for developing voice interfaces in Python. This can include anything from Raspberry Pi applicat

Spokestack 133 Sep 20, 2022
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022