[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

Overview

New Benchmarks for Learning on Non-Homophilous Graphs

Here are the codes and datasets accompanying the paper:
New Benchmarks for Learning on Non-Homophilous Graphs
Derek Lim (Cornell), Xiuyu Li (Cornell), Felix Hohne (Cornell), and Ser-Nam Lim (Facebook AI).
Workshop on Graph Learning Benchmarks, WWW 2021.
[PDF link]

There are codes to load our proposed datasets, compute our measure of the presence of homophily, and train various graph machine learning models in our experimental setup.

Organization

main.py contains the main experimental scripts.

dataset.py loads our datasets.

models.py contains implementations for graph machine learning models, though C&S (correct_smooth.py, cs_tune_hparams.py) is in separate files. Also, gcn-ogbn-proteins.py contains code for running GCN and GCN+JK on ogbn-proteins. Running several of the GNN models on larger datasets may require at least 24GB of VRAM.

homophily.py contains functions for computing homophily measures, including the one that we introduce in our_measure.

Datasets

Alt text

As discussed in the paper, our proposed datasets are "twitch-e", "yelp-chi", "deezer", "fb100", "pokec", "ogbn-proteins", "arxiv-year", and "snap-patents", which can be loaded by load_nc_dataset in dataset.py by passing in their respective string name. Many of these datasets are included in the data/ directory, but due to their size, yelp-chi, snap-patents, and pokec are automatically downloaded from a Google drive link when loaded from dataset.py. The arxiv-year and ogbn-proteins datasets are downloaded using OGB downloaders. load_nc_dataset returns an NCDataset, the documentation for which is also provided in dataset.py. It is functionally equivalent to OGB's Library-Agnostic Loader for Node Property Prediction, except for the fact that it returns torch tensors. See the OGB website for more specific documentation. Just like the OGB function, dataset.get_idx_split() returns fixed dataset split for training, validation, and testing.

When there are multiple graphs (as in the case of twitch-e and fb100), different ones can be loaded by passing in the sub_dataname argument to load_nc_dataset in dataset.py.

twitch-e consists of seven graphs ["DE", "ENGB", "ES", "FR", "PTBR", "RU", "TW"]. In the paper we test on DE.

fb100 consists of 100 graphs. We only include ["Amherst41", "Cornell5", "Johns Hopkins55", "Penn94", "Reed98"] in this repo, although others may be downloaded from the internet archive. In the paper we test on Penn94.

Alt text

Installation instructions

  1. Create and activate a new conda environment using python=3.8 (i.e. conda create --name non-hom python=3.8)
  2. Activate your conda environment
  3. Check CUDA version using nvidia-smi
  4. In the root directory of this repository, run bash install.sh cu110, replacing cu110 with your CUDA version (i.e. CUDA 11 -> cu110, CUDA 10.2 -> cu102, CUDA 10.1 -> cu101). We tested on Ubuntu 18.04, CUDA 11.0.

Running experiments

  1. Make sure a results folder exists in the root directory.
  2. Our experiments are in the experiments/ directory. There are bash scripts for running methods on single and multiple datasets. Please note that the experiments must be run from the root directory. For instance, to run the MixHop experiments on snap-patents, use:
bash experiments/mixhop_exp.sh snap-patents

Some datasets require specifying a second sub_dataset argument e.g. to run MixHop experiments on the twitch-e, DE sub_dataset, do:

bash experiments/mixhop_exp.sh twitch-e DE

Otherwise, run python main.py --help to see the full list of options for running experiments. As one example, to train a GAT with max jumping knowledge connections on (directed) arxiv-year with 32 hidden channels and 4 attention heads, run:

python main.py --dataset arxiv-year --method gatjk --hidden_channels 32 --gat_heads 4 --directed
Owner
Cornell University Artificial Intelligence
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023