100+ Chinese Word Vectors 上百种预训练中文词向量

Overview

Chinese Word Vectors 中文词向量

中文

This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse), context features (word, ngram, character, and more), and corpora. One can easily obtain pre-trained vectors with different properties and use them for downstream tasks.

Moreover, we provide a Chinese analogical reasoning dataset CA8 and an evaluation toolkit for users to evaluate the quality of their word vectors.

Reference

Please cite the paper, if using these embeddings and CA8 dataset.

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu, Xiaoyong Du, Analogical Reasoning on Chinese Morphological and Semantic Relations, ACL 2018.

@InProceedings{P18-2023,
  author =  "Li, Shen
    and Zhao, Zhe
    and Hu, Renfen
    and Li, Wensi
    and Liu, Tao
    and Du, Xiaoyong",
  title =   "Analogical Reasoning on Chinese Morphological and Semantic Relations",
  booktitle =   "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
  year =  "2018",
  publisher =   "Association for Computational Linguistics",
  pages =   "138--143",
  location =  "Melbourne, Australia",
  url =   "http://aclweb.org/anthology/P18-2023"
}

 

A detailed analysis of the relation between the intrinsic and extrinsic evaluations of Chinese word embeddings is shown in the paper:

Yuanyuan Qiu, Hongzheng Li, Shen Li, Yingdi Jiang, Renfen Hu, Lijiao Yang. Revisiting Correlations between Intrinsic and Extrinsic Evaluations of Word Embeddings. Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data. Springer, Cham, 2018. 209-221. (CCL & NLP-NABD 2018 Best Paper)

@incollection{qiu2018revisiting,
  title={Revisiting Correlations between Intrinsic and Extrinsic Evaluations of Word Embeddings},
  author={Qiu, Yuanyuan and Li, Hongzheng and Li, Shen and Jiang, Yingdi and Hu, Renfen and Yang, Lijiao},
  booktitle={Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data},
  pages={209--221},
  year={2018},
  publisher={Springer}
}

Format

The pre-trained vector files are in text format. Each line contains a word and its vector. Each value is separated by space. The first line records the meta information: the first number indicates the number of words in the file and the second indicates the dimension size.

Besides dense word vectors (trained with SGNS), we also provide sparse vectors (trained with PPMI). They are in the same format with liblinear, where the number before " : " denotes dimension index and the number after the " : " denotes the value.

Pre-trained Chinese Word Vectors

Basic Settings

                                       
Window Size Dynamic Window Sub-sampling Low-Frequency Word Iteration Negative Sampling*
5 Yes 1e-5 10 5 5

*Only for SGNS.

Various Domains

Chinese Word Vectors trained with different representations, context features, and corpora.

Word2vec / Skip-Gram with Negative Sampling (SGNS)
Corpus Context Features
Word Word + Ngram Word + Character Word + Character + Ngram
Baidu Encyclopedia 百度百科 300d 300d 300d 300d / PWD: 5555
Wikipedia_zh 中文维基百科 300d 300d 300d 300d
People's Daily News 人民日报 300d 300d 300d 300d
Sogou News 搜狗新闻 300d 300d 300d 300d
Financial News 金融新闻 300d 300d 300d 300d
Zhihu_QA 知乎问答 300d 300d 300d 300d
Weibo 微博 300d 300d 300d 300d
Literature 文学作品 300d 300d / PWD: z5b4 300d 300d / PWD: yenb
Complete Library in Four Sections
四库全书*
300d 300d NAN NAN
Mixed-large 综合
Baidu Netdisk / Google Drive
300d
300d
300d
300d
300d
300d
300d
300d
Positive Pointwise Mutual Information (PPMI)
Corpus Context Features
Word Word + Ngram Word + Character Word + Character + Ngram
Baidu Encyclopedia 百度百科 Sparse Sparse Sparse Sparse
Wikipedia_zh 中文维基百科 Sparse Sparse Sparse Sparse
People's Daily News 人民日报 Sparse Sparse Sparse Sparse
Sogou News 搜狗新闻 Sparse Sparse Sparse Sparse
Financial News 金融新闻 Sparse Sparse Sparse Sparse
Zhihu_QA 知乎问答 Sparse Sparse Sparse Sparse
Weibo 微博 Sparse Sparse Sparse Sparse
Literature 文学作品 Sparse Sparse Sparse Sparse
Complete Library in Four Sections
四库全书*
Sparse Sparse NAN NAN
Mixed-large 综合 Sparse Sparse Sparse Sparse

*Character embeddings are provided, since most of Hanzi are words in the archaic Chinese.

Various Co-occurrence Information

We release word vectors upon different co-occurrence statistics. Target and context vectors are often called input and output vectors in some related papers.

In this part, one can obtain vectors of arbitrary linguistic units beyond word. For example, character vectors is in the context vectors of word-character.

All vectors are trained by SGNS on Baidu Encyclopedia.

                                                       
Feature Co-occurrence Type Target Word Vectors Context Word Vectors
Word Word → Word 300d 300d
Ngram Word → Ngram (1-2) 300d 300d
Word → Ngram (1-3) 300d 300d
Ngram (1-2) → Ngram (1-2) 300d 300d
Character Word → Character (1) 300d 300d
Word → Character (1-2) 300d 300d
Word → Character (1-4) 300d 300d
Radical Radical 300d 300d
Position Word → Word (left/right) 300d 300d
Word → Word (distance) 300d 300d
Global Word → Text 300d 300d
Syntactic Feature Word → POS 300d 300d
Word → Dependency 300d 300d

Representations

Existing word representation methods fall into one of the two classes, dense and sparse represnetations. SGNS model (a model in word2vec toolkit) and PPMI model are respectively typical methods of these two classes. SGNS model trains low-dimensional real (dense) vectors through a shallow neural network. It is also called neural embedding method. PPMI model is a sparse bag-of-feature representation weighted by positive-pointwise-mutual-information (PPMI) weighting scheme.

Context Features

Three context features: word, ngram, and character are commonly used in the word embedding literature. Most word representation methods essentially exploit word-word co-occurrence statistics, namely using word as context feature (word feature). Inspired by language modeling problem, we introduce ngram feature into the context. Both word-word and word-ngram co-occurrence statistics are used for training (ngram feature). For Chinese, characters (Hanzi) often convey strong semantics. To this end, we consider using word-word and word-character co-occurrence statistics for learning word vectors. The length of character-level ngrams ranges from 1 to 4 (character feature).

Besides word, ngram, and character, there are other features which have substantial influence on properties of word vectors. For example, using entire text as context feature could introduce more topic information into word vectors; using dependency parse as context feature could add syntactic constraint to word vectors. 17 co-occurrence types are considered in this project.

Corpus

We made great efforts to collect corpus across various domains. All text data are preprocessed by removing html and xml tags. Only the plain text are kept and HanLP(v_1.5.3) is used for word segmentation. In addition, traditional Chinese characters are converted into simplified characters with Open Chinese Convert (OpenCC). The detailed corpora information is listed as follows:

Corpus Size Tokens Vocabulary Size Description
Baidu Encyclopedia
百度百科
4.1G 745M 5422K Chinese Encyclopedia data from
https://baike.baidu.com/
Wikipedia_zh
中文维基百科
1.3G 223M 2129K Chinese Wikipedia data from
https://dumps.wikimedia.org/
People's Daily News
人民日报
3.9G 668M 1664K News data from People's Daily(1946-2017)
http://data.people.com.cn/
Sogou News
搜狗新闻
3.7G 649M 1226K News data provided by Sogou labs
http://www.sogou.com/labs/
Financial News
金融新闻
6.2G 1055M 2785K Financial news collected from multiple news websites
Zhihu_QA
知乎问答
2.1G 384M 1117K Chinese QA data from
https://www.zhihu.com/
Weibo
微博
0.73G 136M 850K Chinese microblog data provided by NLPIR Lab
http://www.nlpir.org/wordpress/download/weibo.7z
Literature
文学作品
0.93G 177M 702K 8599 modern Chinese literature works
Mixed-large
综合
22.6G 4037M 10653K We build the large corpus by merging the above corpora.
Complete Library in Four Sections
四库全书
1.5G 714M 21.8K The largest collection of texts in pre-modern China.

All words are concerned, including low frequency words.

Toolkits

All word vectors are trained by ngram2vec toolkit. Ngram2vec toolkit is a superset of word2vec and fasttext toolkit, where arbitrary context features and models are supported.

Chinese Word Analogy Benchmarks

The quality of word vectors is often evaluated by analogy question tasks. In this project, two benchmarks are exploited for evaluation. The first is CA-translated, where most analogy questions are directly translated from English benchmark. Although CA-translated has been widely used in many Chinese word embedding papers, it only contains questions of three semantic questions and covers 134 Chinese words. In contrast, CA8 is specifically designed for Chinese language. It contains 17813 analogy questions and covers comprehensive morphological and semantic relations. The CA-translated, CA8, and their detailed descriptions are provided in testsets folder.

Evaluation Toolkit

We present an evaluation toolkit in evaluation folder.

Run the following codes to evaluate dense vectors.

$ python ana_eval_dense.py -v <vector.txt> -a CA8/morphological.txt
$ python ana_eval_dense.py -v <vector.txt> -a CA8/semantic.txt

Run the following codes to evaluate sparse vectors.

$ python ana_eval_sparse.py -v <vector.txt> -a CA8/morphological.txt
$ python ana_eval_sparse.py -v <vector.txt> -a CA8/semantic.txt
Owner
embedding
embedding
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022