PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

Overview

data2vec-pytorch

PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (FAIR)

Data2Vec is the first high-performance self-supervised algorithm that learns the same way in multiple modalities, including speech, vision and text. Most machines learn exclusively from labeled data. However, through self-supervised learning, machines are able to learn about the world just by observing it and then figuring out the structure of images, speech or text. This is a more scalable and efficient approach for machines to tackle new complex tasks, such as understanding text for more spoken languages.

In summary, the method is as follows:

  1. The encoder extracts features from the masked inputs. These features are outputs of every transformer/linear layer.
  2. The teacher which is an EMA instance of the encoder (in eval model), extracts features from the unmasked inputs.
  3. Optional normalizations are applied to the layers/outputs of the teacher.
  4. Encoder outputs are regressed by a projection block/layer.
  5. The loss is calculated from encoder outputs and teacher outputs.

You can read the paper for more detail.

Implementation

Data2Vec is already implemented in fairseq in which for all modalities there is a seperate implementation (text, vision, audio). According to the paper:

Our primary is to design a single learning mechanism for different modalities. Despite the unified learning regime, we still use modality-specific features extractors and masking strategies. This makes sense given the vastly different nature of the input data.

This implementation differs in the fact that a single Data2Vec model is provided powered by a custom encoder (implemented using PyTorch + HuggingFace Transformers) and tries to unify the whole concept in a single module. The key concept is that there must be modality-specific feature extractions and masking strategies.

  • Masking: For each modality, the Dataset instance must return the masked source, the target and the mask tensor.

  • Feature Extraction: Features are the outputs from the transformer/attention layers. So the forward method must return outputs from all Encoder blocks of the transformer model. HuggingFace Transformers/Fairseq models return transformer layers outputs separately out of the box.

This implementation uses HuggingFace Transformers models as encoders for Data2Vec which you can inspect in the encoder.py files for each modality. Although, you can provide your own encoder model. Just make sure that your encoder must be Transformer-based according to the paper and outputs from every encoder layer must be provided.

Note: This implementation's goal is to provide the necessary building blocks of Data2Vec so anyone can adapt it to their own use case with ease, so in order to make it easy to get hands on, some functionalities like mixed precision, distributed training, etc are not included to keep it as clean & simple as possible. If you only need to train a standard large scale Data2Vec model use the official repo.

Train

First things first, install the requirements:

pip install -r requirements.txt

NLP

Train a Language Model based on RoBERTa (HuggingFace) on WikiText103

Configure the related properties in text/configs/roberta-pretraining.yaml and run:

python train.py --config text/configs/roberta-pretraining.yaml 

Vision

Run a Masked Image modeling training based on BEiT (HuggingFace)

Pass the path to the image dataset in the config file at vision/configs/beit-pretraining.yaml under dataset > path > train/test and modify other properties as you desire and run the following:

python train.py --config vision/configs/beit-pretraining.yaml 

Speech

Audio pretraining based on Wav2Vec2 (HuggingFace) on timit dataset. If you want to use other datasets like librispeech provide it in audio/dataset.py (some minor changes to the timit class would do the job because both are loaded from HuggingFace datasets)

Configure other properties as you desire and run the following:

python train.py --config audio/configs/wav2vec2-pretraining.yaml 

Pre-trained Weights

The models are available on HuggingFace Hub and you can use them like below:

RoBERTa

Data2Vec model trained with RoBERTa as the encoder (data2vec-roberta-base)

from transformers import AutoModel, AutoConfig
from transformers import RobertaModel

checkpoint = 'arxyzan/data2vec-roberta-base'

# Option 1: load using AutoModel
data2vec_roberta = AutoModel.from_pretrained(checkpoint)

# Option 2: load directly by RobertaModel
data2vec_roberta = RobertaModel.from_pretrained(checkpoint)

BEiT

Data2Vec model trained with BEiT as the encoder (data2vec-beit-base)

from transformers import AutoModel, AutoConfig
from transformers import BeitModel

checkpoint = 'arxyzan/data2vec-beit-base'

# Option 1: load using AutoModel
data2vec_beit = AutoModel.from_pretrained(checkpoint)

# Option 2: load directly by BeitModel
data2vec_beit = BeitModel.from_pretrained(checkpoint)

Wav2Vec2

Data2Vec model trained with Wav2Vec2 as the encoder (data2vec-wav2vec2-base)

from transformers import AutoModel, AutoConfig
from transformers import Wav2Vec2Model

checkpoint = 'arxyzan/data2vec-wav2vec2-base'

# Option 1: load using AutoModel
data2vec_wav2vec2 = AutoModel.from_pretrained(checkpoint)

# Option 2: load directly by Wav2Vec2Model
data2vec_wav2vec2 = Wav2Vec2Model.from_pretrained(checkpoint)

Note: The above models' weights were carefully ported from the original checkpoints in the fairseq version.

Fine-tuning

  1. Fine-tune using the checkpoints mentioned above:
# Text classification using Roberta model from HuggingFace
from transformers import RobertaModel, RobertaForSequenceClassification

checkpoint = 'arxyzan/data2vec-roberta-base'
# this is exactly a roberta model but trained with data2vec
data2vec_roberta = RobertaModel.from_pretrained(checkpoint)
text_classifier = RobertaForSequenceClassification(data2vec_roberta.config)
# assign `data2vec-roberta` weights to the roberta block of the classifier
text_classifier.roberta = data2vec_roberta
...
  1. In case you trained a model using this codebase, you can fine-tune it by taking out the encoder's state dict from the checkpoint which gives you a HuggingFace model and you can fine-tune it for any downstream task as you'd normally do for HuggingFace models.
# load a checkpoint for finetuning
from transformers import RobertaModel, RobertaConfig
roberta = RobertaModel(RobertaConfig())
checkpoint = torch.load('path/to/data2vec.pt')
roberta_state_dict = checkpoint['encoder']
# load roberta weights from the encoder part of the data2vec model
encoder = roberta.load_state_dict(roberta_state_dict)

# Now fine-tune a regular HuggingFace RoBERTa model
...

Contributions

Any contribution regarding training, development and issues are welcome!

Owner
Aryan Shekarlaban
Deep Learning Developer & Researcher
Aryan Shekarlaban
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess

Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see

Adam Muhammad Klesc 2 Mar 29, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드

korean extractive summarization 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드 Leaderboard Notice Text Summarization with Pretrained Encoders에 나오는 bertsumext모델(ext

3 Aug 10, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022