FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

Overview

FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP only focuses on adavanced models and dataset, while FedML supports various federated optimizers (e.g., FedAvg) and platforms (Distributed Computing, IoT/Mobile, Standalone).

The figure below is the overall structure of FedNLP. avatar

Installation

After git clone-ing this repository, please run the following command to install our dependencies.

conda create -n fednlp python=3.7
conda activate fednlp
# conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch -n fednlp
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt 
cd FedML; git submodule init; git submodule update; cd ../;

Code Structure of FedNLP

  • FedML: a soft repository link generated using git submodule add https://github.com/FedML-AI/FedML.

  • data: provide data downloading scripts and raw data loader to process original data and generate h5py files. Besides, data/advanced_partition offers some practical partition functions to split data for each client.

Note that in FedML/data, there also exists datasets for research, but these datasets are used for evaluating federated optimizers (e.g., FedAvg) and platforms. FedNLP supports more advanced datasets and models.

  • data_preprocessing: preprocessors, examples and utility functions for each task formulation.

  • data_manager: data manager is responsible for loading dataset and partition data from h5py files and driving preprocessor to transform data to features.

  • model: advanced NLP models. You can define your own models in this folder.

  • trainer: please define your own trainer.py by inheriting the base class in FedML/fedml-core/trainer/fedavg_trainer.py. Some tasks can share the same trainer.

  • experiments/distributed:

    1. experiments is the entry point for training. It contains experiments in different platforms. We start from distributed.
    2. Every experiment integrates FIVE building blocks FedML (federated optimizers), data_manager, data_preprocessing, model, trainer.
    3. To develop new experiments, please refer the code at experiments/distributed/transformer_exps/fedavg_main_tc.py.
  • experiments/centralized:

    1. This is used to get the reference model accuracy for FL.

Data Preparation

In order to set up correct data to support federated learning, we provide some processed data files and partition files. Users can download them for further training conveniently.

If users want to set up their own dataset, they can refer the scripts under data/raw_data_loader. We already offer a bunch of examples, just follow one of them to prepare your owned data!

download our processed files from Amazon S3.

Dwnload files for each dataset using these two scripts data/download_data.sh and data/download_partition.sh.

We provide two files for each dataset: data files are saved in data_files, and partition files are in directory partiton_files. You need to put the downloaded data_files and partition_files in the data folder here. Simply put, we will have data/data_files/*_data.h5 and data/partition_files/*_partition.h5 in the end.

Experiments for Centralized Learning (Sanity Check)

Transformer-based models

First, please use this command to test the dependencies.

# Test the environment for the fed_transformers
python -m model.fed_transformers.test

Run Text Classification model with distilbert:

DATA_NAME=20news
CUDA_VISIBLE_DEVICES=1 python -m experiments.centralized.transformer_exps.main_tc \
    --dataset ${DATA_NAME} \
    --data_file ~/fednlp_data/data_files/${DATA_NAME}_data.h5 \
    --partition_file ~/fednlp_data/partition_files/${DATA_NAME}_partition.h5 \
    --partition_method niid_label_clients=100.0_alpha=5.0 \
    --model_type distilbert \
    --model_name distilbert-base-uncased  \
    --do_lower_case True \
    --train_batch_size 32 \
    --eval_batch_size 8 \
    --max_seq_length 256 \
    --learning_rate 5e-5 \
    --epochs 20 \
    --evaluate_during_training_steps 500 \
    --output_dir /tmp/${DATA_NAME}_fed/ \
    --n_gpu 1

Experiments for Federated Learning

We already summarize some scripts for running federated learning experiments. Once you finished the environment settings, you can refer and run these scripts including run_text_classification.sh, run_seq_tagging.sh and run_span_extraction.sh under experiments/distributed/transformer_exps.

Citation

Please cite our FedNLP and FedML paper if it helps your research. You can describe us in your paper like this: "We develop our experiments based on FedNLP [1] and FedML [2]".

Owner
FedML-AI
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML-AI
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
NLP library designed for reproducible experimentation management

Welcome to the Transfer NLP library, a framework built on top of PyTorch to promote reproducible experimentation and Transfer Learning in NLP You can

Feedly 290 Dec 20, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
scikit-learn wrappers for Python fastText.

skift scikit-learn wrappers for Python fastText. from skift import FirstColFtClassifier df = pandas.DataFrame([['woof', 0], ['meow', 1]], colu

Shay Palachy 233 Sep 09, 2022
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Lizhuo 1 Dec 23, 2021
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022