Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Overview

Linear Multihead Attention (Linformer)

PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity), which demonstrates that the self-attention mechanism can be approximated by a low-rank matrix and reduces the overall self-attention complexity from O(n^2) to O(n) in both time and space.

Implementation

This is an efficient implementation followed with the PyTorch official torch.nn.MultiheadAttention class and F.multi_head_attention_forward function.

Three additional argments defined in LinearMultiheadAttention: sequence length, the projected dimention k and the parameter sharing.

seq_len: the sequence length. Default: 100.
proj_k: the projected dimention `k` in Linformer paper. Default: 128.
param_sharing: parameter sharing mode: layerwise, none. headwise is not implemented. Default: none.

Usage

Examples of using torch.nn.MultiheadAttention:

>>> import torch
>>> multihead_attn = torch.nn.MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)

Examples of using LinearMultiheadAttention:

>>> from linear_multihead_attention import LinearMultiheadAttention
>>> multihead_attn = LinearMultiheadAttention(embed_dim, num_heads) 
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)

Examples of using LinearMultiheadAttention with the sequence length of 512 and :

>>> from linear_multihead_attention import LinearMultiheadAttention
>>> multihead_attn = LinearMultiheadAttention(embed_dim, num_heads, seq_len=512, proj_k=256, param_sharing='layerwise') 
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)

Linear-DETR: Replace torch.nn.MultiheadAttention in DETR with LinearMultiheadAttention in three lines in models/transformer.py, it saved much more memory and space, hope to have a comparable performance:

from linear_multihead_attention import LinearMultiheadAttention

# TransformerEncoderLayer
# self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, seq_len=w*h, proj_k=64) # where w, h are from `bs, c, h, w = src.shape`


# TransformerDecoderLayer
# self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)

self.self_attn = LinearMultiheadAttention(d_model, nhead, dropout=dropout, seq_len=num_queries, proj_k=64) # where num_queries = args.num_queries
self.multihead_attn = LinearMultiheadAttention(d_model, nhead, dropout=dropout, seq_len=w*h, proj_k=64) # where w, h are from `bs, c, h, w = src.shape`

Results on DETR

TODO

Citation

@misc{wang2020linformer,
    title={Linformer: Self-Attention with Linear Complexity},
    author={Sinong Wang and Belinda Z. Li and Madian Khabsa and Han Fang and Hao Ma},
    year={2020},
    eprint={2006.04768},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Owner
Kui Xu
Researcher, interested in Computational Biology, and 3D Computer Vision.
Kui Xu
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank

Main Idea The following links explain a bit the idea of semantic search and how search mechanisms work by doing retrieve and rerank Semantic Search Re

Sergio Arnaud Gomez 2 Jan 28, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Saptak Bhoumik 14 May 24, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
Türkçe küfürlü içerikleri bulan bir yapay zeka kütüphanesi / An ML library for profanity detection in Turkish sentences

"Kötü söz sahibine aittir." -Anonim Nedir? sinkaf uygunsuz yorumların bulunmasını sağlayan bir python kütüphanesidir. Farkı nedir? Diğer algoritmalard

KaraGoz 4 Feb 18, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
Vad-sli-asr - A Python scripts for a speech processing pipeline with Voice Activity Detection (VAD)

VAD-SLI-ASR Python scripts for a speech processing pipeline with Voice Activity

Dynamics of Language 14 Dec 09, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022