The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Overview

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds

image In this project, we aimed to develop a deep learning (DL) method to automatically detect impaired left ventricular (LV) function and aortic valve (AV) regurgitation from apical four-chamber (A4C) ultrasound cineloops. Two R(2+1)D convolutional neural networks (CNNs) were trained to detect the respective diseases. Subsequently, tSNE was used to visualize the embedding of the extracted feature vectors, and DeepLIFT was used to identify important image features associated with the diagnostic tasks.

The why

  • An automated echocardiography interpretation method requiring only limited views as input, say A4C, could make cardiovascular disease diagnosis more accessible.

    • Such system could become beneficial in geographic regions with limited access to expert cardiologists and sonographers.
    • It could also support general practitioners in the management of patients with suspected CVD, facilitating timely diagnosis and treatment of patients.
  • If the trained CNN can detect the diseases based on limited information, how?

    • Especially, AV regurgitation is typically diagnosed based on color Doppler images using one or more viewpoints. When given only the A4C view, would the model be able to detect regurgitation? If so, what image features does the model use to make the distinction? Since it’s on the A4C view, would the model identify some anatomical structure or movement associated with regurgitation, which are typically not being considered in conventional image interpretation? This is what we try to find out in the study.

Image features associated with the diagnostic tasks

DeepLIFT attributes a model’s classification output to certain input features (pixels), which allows us to understand which region or frame in an ultrasound is the key that makes the model classify it as a certain diagnosis. Below are some example analyses.

Representative normal cases

Case Averaged logit Input clip / Impaired LV function model's focus / AV regurgitation model's focus
Normal1 0.9999 image
Normal2 0.9999 image
Normal3 0.9999 image
Normal4 0.9999 image
Normal5 0.9999 image
Normal6 0.9999 image
Normal7 0.9998 image
Normal8 0.9998 image
Normal9 0.9998 image
Normal10 0.9997 image

DeepLIFT analyses reveal that the LV myocardium and mitral valve were important for detecting impaired LV function, while the tip of the mitral valve anterior leaflet, during opening, was considered important for detecting AV regurgitation. Apart from the above examples, all confident cases are provided, which the predicted probability of being the normal class by the two models are both higher than 0.98. See the full list here.

Representative disease cases

  • Mildly impaired LV
Case Logit Input clip / Impaired LV function model's focus
MildILV1 0.9989 image
MildILV2 0.9988 image
  • Severely impaired LV
Case Logit Input clip / Impaired LV function model's focus
SevereILV1 1.0000 image
SevereILV2 1.0000 image
  • Mild AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
MildAVR1 0.7240 image
MildAVR2 0.6893 image
  • Substantial AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
SubstantialAVR1 0.9919 image
SubstantialAVR2 0.9645 image

When analyzing disease cases, the highlighted regions in different queries are quite different. We speculate that this might be due to a higher heterogeneity in the appearance of the disease cases. Apart from the above examples, more confident disease cases are provided. See the full list here.

Run the code on your own dataset

The dataloader in util can be modified to fit your own dataset. To run the full workflow, namely training, validation, testing, and the subsequent analyses, simply run the following commands:

git clone https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature.git
cd Disease-Detection-and-Diagnostic-Image-Feature/util
pip install -e .
cd ../projectDDDIF
python main.py

Loading the trained model weights

The model weights are made available for external validation, or as pretraining for other echocardiography-related tasks. To load the weights, navigate to the projectDDDIF folder, and run the following python code:

import torch
import torch.nn as nn
import torchvision

#Load impaired LV model
model_path = 'model/impairedLV/train/model_val_min.pth'
# #Load AV regurgitation model
# model_path = 'model/regurg/train/model_val_min.pth'

model = torchvision.models.video.__dict__["r2plus1d_18"](pretrained=False)
model.stem[0] = nn.Conv3d(1, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False)
model.fc = nn.Linear(model.fc.in_features, 3)
model.load_state_dict(torch.load(model_path))

Questions and feedback

For techinical problems or comments about the project, feel free to contact [email protected].

Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022