The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Overview

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds

image In this project, we aimed to develop a deep learning (DL) method to automatically detect impaired left ventricular (LV) function and aortic valve (AV) regurgitation from apical four-chamber (A4C) ultrasound cineloops. Two R(2+1)D convolutional neural networks (CNNs) were trained to detect the respective diseases. Subsequently, tSNE was used to visualize the embedding of the extracted feature vectors, and DeepLIFT was used to identify important image features associated with the diagnostic tasks.

The why

  • An automated echocardiography interpretation method requiring only limited views as input, say A4C, could make cardiovascular disease diagnosis more accessible.

    • Such system could become beneficial in geographic regions with limited access to expert cardiologists and sonographers.
    • It could also support general practitioners in the management of patients with suspected CVD, facilitating timely diagnosis and treatment of patients.
  • If the trained CNN can detect the diseases based on limited information, how?

    • Especially, AV regurgitation is typically diagnosed based on color Doppler images using one or more viewpoints. When given only the A4C view, would the model be able to detect regurgitation? If so, what image features does the model use to make the distinction? Since it’s on the A4C view, would the model identify some anatomical structure or movement associated with regurgitation, which are typically not being considered in conventional image interpretation? This is what we try to find out in the study.

Image features associated with the diagnostic tasks

DeepLIFT attributes a model’s classification output to certain input features (pixels), which allows us to understand which region or frame in an ultrasound is the key that makes the model classify it as a certain diagnosis. Below are some example analyses.

Representative normal cases

Case Averaged logit Input clip / Impaired LV function model's focus / AV regurgitation model's focus
Normal1 0.9999 image
Normal2 0.9999 image
Normal3 0.9999 image
Normal4 0.9999 image
Normal5 0.9999 image
Normal6 0.9999 image
Normal7 0.9998 image
Normal8 0.9998 image
Normal9 0.9998 image
Normal10 0.9997 image

DeepLIFT analyses reveal that the LV myocardium and mitral valve were important for detecting impaired LV function, while the tip of the mitral valve anterior leaflet, during opening, was considered important for detecting AV regurgitation. Apart from the above examples, all confident cases are provided, which the predicted probability of being the normal class by the two models are both higher than 0.98. See the full list here.

Representative disease cases

  • Mildly impaired LV
Case Logit Input clip / Impaired LV function model's focus
MildILV1 0.9989 image
MildILV2 0.9988 image
  • Severely impaired LV
Case Logit Input clip / Impaired LV function model's focus
SevereILV1 1.0000 image
SevereILV2 1.0000 image
  • Mild AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
MildAVR1 0.7240 image
MildAVR2 0.6893 image
  • Substantial AV regurgitation
Case Logit Input clip / AV regurgitation model's focus
SubstantialAVR1 0.9919 image
SubstantialAVR2 0.9645 image

When analyzing disease cases, the highlighted regions in different queries are quite different. We speculate that this might be due to a higher heterogeneity in the appearance of the disease cases. Apart from the above examples, more confident disease cases are provided. See the full list here.

Run the code on your own dataset

The dataloader in util can be modified to fit your own dataset. To run the full workflow, namely training, validation, testing, and the subsequent analyses, simply run the following commands:

git clone https://github.com/LishinC/Disease-Detection-and-Diagnostic-Image-Feature.git
cd Disease-Detection-and-Diagnostic-Image-Feature/util
pip install -e .
cd ../projectDDDIF
python main.py

Loading the trained model weights

The model weights are made available for external validation, or as pretraining for other echocardiography-related tasks. To load the weights, navigate to the projectDDDIF folder, and run the following python code:

import torch
import torch.nn as nn
import torchvision

#Load impaired LV model
model_path = 'model/impairedLV/train/model_val_min.pth'
# #Load AV regurgitation model
# model_path = 'model/regurg/train/model_val_min.pth'

model = torchvision.models.video.__dict__["r2plus1d_18"](pretrained=False)
model.stem[0] = nn.Conv3d(1, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False)
model.fc = nn.Linear(model.fc.in_features, 3)
model.load_state_dict(torch.load(model_path))

Questions and feedback

For techinical problems or comments about the project, feel free to contact [email protected].

Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022