Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

Overview

PatchNets

This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details, we refer to our project page, which also includes supplemental videos.

This code requires a functioning installation of DeepSDF, which can then be modified using the provided files.

(Optional) Making ShapeNet V1 Watertight

If you want to use ShapeNet, please follow these steps:

  1. Download Occupancy Networks
  2. On Linux, follow the installation steps from there:
conda env create -f environment.yaml
conda activate mesh_funcspace
python setup.py build_ext --inplace
  1. Install the four external dependencies from external/mesh-fusion:
    • for libfusioncpu and libfusiongpu, run cmake and then setup.py
    • for libmcubes and librender, run setup.py
  2. Replace the original OccNet files with the included slightly modified versions. This mostly switches to using .obj instead of .off
  3. Prepare the original Shapenet meshes by copying all objs as follows: from 02858304/1b2e790b7c57fc5d2a08194fd3f4120d/model.obj to 02858304/1b2e790b7c57fc5d2a08194fd3f4120d.obj
  4. Use generate_watertight_meshes_and_sample_points() from useful_scripts.py. Needs to be run twice, see comment at generate_command.
  5. On a Linux machine with display, activate mesh_funcspace
  6. Run the generated command.sh. Note: this preprocessing crashes frequently because some meshes cause issues. They need to be deleted.

Preprocessing

During preprocessing, we generate SDF samples from obj files.

The C++ files in src/ are modified versions of the corresponding DeepSDF files. Please follow the instruction on the DeepSDF github repo to compile these. Then run preprocess_data.py. There is a special flag in preprocess_data.py for easier handling of ShapeNet. There is also an example command for preprocessing ShapeNet in the code comments. If you want to use depth completion, add the --randomdepth and --depth flags to the call to preprocess_data.py.

Training

The files in code/ largely follow DeepSDF and replace the corresponding files in your DeepSDF installation. Note that some legacy functions from these files might not be compatible with PatchNets.

  • Some settings files are available in code/specs/. The training/test splits can be found in code/examples/splits/. The DataSource and, if used, the patch_network_pretrained_path and pretrained_depth_encoder_weights need to be adapted.
  • Set a folder that collects all experiments in code/localization/SystemSpecific.py.
  • The code uses code/specs.json as the settings file. Replace this file with the desired settings file.
  • The code creates a results folder, which also includes a backup. This is necessary to later run the evaluation script.
  • Throughout the code, metadata refers to patch extrinsics.
  • mixture_latent_mode can be set to all_explicit for normal PatchNets mode or to all_implicit for use with object latents.
    • Some weights automatically change in deep_sdf_decoder.py depending on whether all_explicit or all_implicit is used.
  • For all_implicit/object latents, please set sdf_filename under use_precomputed_bias_init in deep_sdf_decoder.py to an .npz file that was obtained via Preprocessing and for which initialize_mixture_latent_vector() from train_deep_sdf.py has been run (e.g. by including it in the training set and training a normal PatchNet). MixtureCodeLength is the object latent size and PatchCodeLength is the size of each of the regressed patch codes.
  • For all_explicit/normal PatchNets, MixtureCodeLength needs to be compatible with PatchCodeLength. Set MixtureCodeLength = (PatchCodeLength + 7) x num_patches. The 7 comes from position (3) + rotation (3) + scale (1). Always use 7, regardless of whether scale and/or rotation are used. Consider keeping the patch extrinsics fixed at their initial values instead of optimizing them with the extrinsics loss, see the second stage of StagedTraining.
  • When using staged training, NumEpochs and the total Lengths of each Staged schedule should be equal. Also note that both Staged schedules should have the exact same Lengths list.

Evaluation

  1. Fit PatchNets to test data: Use train_deep_sdf.py to run the trained network on the test data. Getting the patch parameters for a test set is almost the same workflow as training a network, except that the network weights are initialized and then kept fixed and a few other settings are changed. Please see included test specs.json for examples. In all cases, set test_time = True, train_patch_network = False, train_object_to_patch = False. Set patch_network_pretrained_path in the test specs.json to the results folder of the trained network. Make sure that ScenesPerBatch is a multiple of the test set size. Adjust the learning rate schedules according to the test specs.json examples included.
  2. Get quantitative evaluation: Use evaluate_patch_network_metrics() from useful_scripts.py with the test results folder. Needs to be run twice, see comment at generate_meshes. Running this script requires an installation of Occupancy Networks, see comments in evaluate_patch_network_metrics(). It also requires the obj files of the dataset that were used for Preprocessing.

Applications, Experiments, and Mesh Extraction

useful_scripts.py contains code for the object latent applications from Sec. 4.3: latent interpolation, the generative model and depth completion. The depth completion code contains a mode for quantitative evaluation. useful_scripts.py also contains code to extract meshes.

code/deep_sdf/data.py contains the code snippet used for the synthetic noise experiments in Sec. 7 of the supplementary material.

Additional Functionality

The code contains additional functionalities that are not part of the publication. They might work but have not been thoroughly tested and can be removed.

  • wrappers to allow for easy interaction with a trained network (do not remove, required to run evaluation)
    • _setup_torch_network() in useful_scripts.py
  • a patch encoder
    • Instead of autodecoding a patch latent code, it is regressed from SDF point samples that lie inside the patch.
    • Encoder in specs.json. Check that this works as intended, later changes to the code might have broken something.
  • a depth encoder
    • A depth encoder maps from one depth map to all patch parameters.
    • use_depth_encoder in specs.json. Check that this works as intended, later changes to the code might have broken something.
  • a tiny PatchNet version
    • The latent code is reshaped and used as network weights, i.e. there are no shared weights between different patches.
    • dims in specs.json should be set to something small like [ 8, 8, 8, 8, 8, 8, 8 ]
    • use_tiny_patchnet in specs.json
    • Requires to set PatchLatentCode correctly, the desired value is printed by _initialize_tiny_patchnet() in deep_sdf_decoder.py.
  • a hierarchical representation
    • Represents/encodes a shape using large patches for simple regions and smaller patches for complex regions of the geometry.
    • hierarchical_representation() in useful_scripts.py. Never tested. Later changes to the network code might also have broken something.
  • simplified curriculum weighting from Curriculum DeepSDF
    • use_curriculum_weighting in specs.json. Additional parameters are in train_deep_sdf.py. This is our own implementation, not based on their repo, so mistakes are ours.
  • positional encoding from NeRF
    • positional_encoding in specs.json. Additional parameters are in train_deep_sdf.py. This is our own implementation, not based on their repo, so mistakes are ours.
  • a Neural ODE deformation model for patches
    • Instead of a simple MLP regressing the SDF value, a velocity field first deforms the patch region and then the z-value of the final xyz position is returned as the SDF value. Thus the field flattens the surface to lie in the z=0 plane. Very slow due to Neural ODE. Might be useful to get UV maps/a direct surface parametrization.
    • use_ode and time_dependent_ode in specs.json. Additional parameters are in train_deep_sdf.py.
  • a mixed representation that has explicit patch latent codes and only regresses patch extrinsics from an object latent code
    • Set mixture_latent_mode in specs.json to patch_explicit_meta_implicit. posrot_latent_size is the size of the object latent code in this case. mixture_to_patch_parameters is the network that regresses the patch extrinsics. Check that this works as intended, later changes to the code might have broken something.

Citation

This code builds on DeepSDF. Please consider citing DeepSDF and PatchNets if you use this code.

@article{Tretschk2020PatchNets, 
    author = {Tretschk, Edgar and Tewari, Ayush and Golyanik, Vladislav and Zollh\"{o}fer, Michael and Stoll, Carsten and Theobalt, Christian}, 
    title = "{PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations}", 
    journal = {European Conference on Computer Vision (ECCV)}, 
    year = "2020" 
} 
@InProceedings{Park_2019_CVPR,
    author = {Park, Jeong Joon and Florence, Peter and Straub, Julian and Newcombe, Richard and Lovegrove, Steven},
    title = {DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2019}
}

License

Please note that this code is released under an MIT licence, see LICENCE. We have included and modified third-party components, which have their own licenses. We thank all of the respective authors for releasing their code, especially the team behind DeepSDF!

Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
A spherical CNN for weather forecasting

DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew

DeepSphere 47 Dec 25, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022