A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

Overview

One-Stage Visual Grounding

***** New: Our recent work on One-stage VG is available at ReSC.*****

A Fast and Accurate One-Stage Approach to Visual Grounding

by Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing Huang, Dong Yu, and Jiebo Luo

IEEE International Conference on Computer Vision (ICCV), 2019, Oral

Introduction

We propose a simple, fast, and accurate one-stage approach to visual grounding. For more details, please refer to our paper.

Citation

@inproceedings{yang2019fast,
  title={A Fast and Accurate One-Stage Approach to Visual Grounding},
  author={Yang, Zhengyuan and Gong, Boqing and Wang, Liwei and Huang
    , Wenbing and Yu, Dong and Luo, Jiebo},
  booktitle={ICCV},
  year={2019}
}

Prerequisites

  • Python 3.5 (3.6 tested)
  • Pytorch 0.4.1
  • Others (Pytorch-Bert, OpenCV, Matplotlib, scipy, etc.)

Installation

  1. Clone the repository

    git clone https://github.com/zyang-ur/onestage_grounding.git
    
  2. Prepare the submodules and associated data

  • RefCOCO & ReferItGame Dataset: place the data or the soft link of dataset folder under ./ln_data/. We follow dataset structure DMS. To accomplish this, the download_dataset.sh bash script from DMS can be used.
    bash ln_data/download_data.sh --path ./ln_data
  • Flickr30K Entities Dataset: please download the images for the dataset on the website for the Flickr30K Entities Dataset and the original Flickr30k Dataset. Images should be placed under ./ln_data/Flickr30k/flickr30k_images.

  • Data index: download the generated index files and place them as the ./data folder. Availble at [Gdrive], [One Drive].

    rm -r data
    tar xf data.tar
    
  • Model weights: download the pretrained model of Yolov3 and place the file in ./saved_models.

    sh saved_models/yolov3_weights.sh
    

More pretrained models are availble in the performance table [Gdrive], [One Drive] and should also be placed in ./saved_models.

Training

  1. Train the model, run the code under main folder. Using flag --lstm to access lstm encoder, Bert is used as the default. Using flag --light to access the light model.

    python train_yolo.py --data_root ./ln_data/ --dataset referit \
      --gpu gpu_id --batch_size 32 --resume saved_models/lstm_referit_model.pth.tar \
      --lr 1e-4 --nb_epoch 100 --lstm
    
  2. Evaluate the model, run the code under main folder. Using flag --test to access test mode.

    python train_yolo.py --data_root ./ln_data/ --dataset referit \
      --gpu gpu_id --resume saved_models/lstm_referit_model.pth.tar \
      --lstm --test
    
  3. Visulizations. Flag --save_plot will save visulizations.

Performance and Pre-trained Models

Please check the detailed experiment settings in our paper.

Dataset Ours-LSTM Performance ([email protected]) Ours-Bert Performance ([email protected])
ReferItGame Gdrive 58.76 Gdrive 59.30
Flickr30K Entities One Drive 67.62 One Drive 68.69
RefCOCO val: 73.66 val: 72.05
testA: 75.78 testA: 74.81
testB: 71.32 testB: 67.59

Credits

Part of the code or models are from DMS, MAttNet, Yolov3 and Pytorch-yolov3.

Owner
Zhengyuan Yang
Zhengyuan Yang
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

MGANs Training & Testing code (torch), pre-trained models and supplementary materials for "Precomputed Real-Time Texture Synthesis with Markovian Gene

290 Nov 15, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
A library of scripts that interact with the PythonTurtle module to create games, drawings, and more

TurtleLib TurtleLib is a library of scripts that interact with the PythonTurtle module to create games, drawings, and more! Using the Scripts Copy or

1 Jan 15, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022