Turning SymPy expressions into JAX functions

Overview

sympy2jax

.github/workflows/CI.yml

Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions.

All SymPy floats become trainable input parameters. SymPy symbols become columns of a passed matrix.

Installation

pip install git+https://github.com/MilesCranmer/sympy2jax.git

Example

import sympy
from sympy import symbols
import jax
import jax.numpy as jnp
from jax import random
from sympy2jax import sympy2jax

Let's create an expression in SymPy:

x, y = symbols('x y')
expression = 1.0 * sympy.cos(x) + 3.2 * y

Let's get the JAX version. We pass the equation, and the symbols required.

f, params = sympy2jax(expression, [x, y])

The order you supply the symbols is the same order you should supply the features when calling the function f (shape [nrows, nfeatures]). In this case, features=2 for x and y. The params in this case will be jnp.array([1.0, 3.2]). You pass these parameters when calling the function, which will let you change them and take gradients.

Let's generate some JAX data to pass:

key = random.PRNGKey(0)
X = random.normal(key, (10, 2))

We can call the function with:

f(X, params)

#> DeviceArray([-2.6080756 ,  0.72633684, -6.7557726 , -0.2963162 ,
#                6.6014843 ,  5.032483  , -0.810931  ,  4.2520013 ,
#                3.5427954 , -2.7479894 ], dtype=float32)

We can take gradients with respect to the parameters for each row with JAX gradient parameters now:

jac_f = jax.jacobian(f, argnums=1)
jac_f(X, params)

#> DeviceArray([[ 0.49364874, -0.9692889 ],
#               [ 0.8283714 , -0.0318858 ],
#               [-0.7447336 , -1.8784496 ],
#               [ 0.70755106, -0.3137085 ],
#               [ 0.944834  ,  1.767703  ],
#               [ 0.51673377,  1.4111717 ],
#               [ 0.87347716, -0.52637756],
#               [ 0.8760679 ,  1.0549792 ],
#               [ 0.9961824 ,  0.79581654],
#               [-0.88465923, -0.5822907 ]], dtype=float32)

We can also JIT-compile our function:

compiled_f = jax.jit(f)
compiled_f(X, params)

#> DeviceArray([-2.6080756 ,  0.72633684, -6.7557726 , -0.2963162 ,
#                6.6014843 ,  5.032483  , -0.810931  ,  4.2520013 ,
#                3.5427954 , -2.7479894 ], dtype=float32)
Owner
Miles Cranmer
Astro PhD candidate @princeton trying to accelerate astrophysics with AI. I build interpretable ML algorithms.
Miles Cranmer
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022