PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Overview

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Created by Prarthana Bhattacharyya.

Disclaimer: This is not an official product and is meant to be a proof-of-concept and for academic/educational use only.

This repository contains the PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime, to be presented at ICASSP-2022.

Self-supervision has shown outstanding results for natural language processing, and more recently, for image recognition. Simultaneously, vision transformers and its variants have emerged as a promising and scalable alternative to convolutions on various computer vision tasks. In this paper, we are the first to question if self-supervised vision transformers (SSL-ViTs) can be adapted to two important computer vision tasks in the low-label, high-data regime: few-shot image classification and zero-shot image retrieval. The motivation is to reduce the number of manual annotations required to train a visual embedder, and to produce generalizable, semantically meaningful and robust embeddings.


Results

  • SSL-ViT + few-shot image classification:
  • Qualitative analysis for base-classes chosen by supervised CNN and SSL-ViT for few-shot distribution calibration:
  • SSL-ViT + zero-shot image retrieval:

Pretraining Self-Supervised ViT

  • Run DINO with ViT-small network on a single node with 4 GPUs for 100 epochs with the following command.
cd dino/
python -m torch.distributed.launch --nproc_per_node=4 main_dino.py --arch vit_small --data_path /path/to/imagenet/train --output_dir /path/to/saving_dir
  • For mini-ImageNet pretraining, we use the classes listed in: ssl-vit-fewshot/data/ImageNetSSLTrainingSplit_mini.txt For tiered-ImageNet pretraining, we use the classes listed in: ssl-vit-fewshot/data/ImageNetSSLTrainingSplit_tiered.txt
  • For CUB-200, Cars-196 and SOP, we use the pretrained model from:
import torch
vits16 = torch.hub.load('facebookresearch/dino:main', 'dino_vits16')

Visual Representation Learning with Self-Supervised ViT for Low-Label High-Data Regime

Dataset Preparation

Please follow the instruction in FRN for few-shot image classification and RevisitDML for zero-shot image retrieval to download the datasets and put the corresponding datasets in ssl-vit-fewshot/data and DIML/data folder.

Training and Evaluation for few-shot image classification

  • The first step is to extract features for base and novel classes using the pretrained SSL-ViT.
  • get_dino_miniimagenet_feats.ipynb extracts SSL-ViT features for the base and novel classes.
  • Change the hyper-parameter data_path to use CUB or tiered-ImageNet.
  • The SSL-ViT checkpoints for the various datasets are provided below (Note: this has only been trained without labels). We also provide the extracted features which need to be stored in ssl-vit-fewshot/dino_features_data/.
arch dataset download extracted-train extracted-test
ViT-S/16 mini-ImageNet mini_imagenet_checkpoint.pth train.p test.p
ViT-S/16 tiered-ImageNet tiered_imagenet_checkpoint.pth train.p test.p
ViT-S/16 CUB cub_checkpoint.pth train.p test.p
  • For n-way-k-shot evaluation, we provide miniimagenet_evaluate_dinoDC.ipynb.

Training and Evaluation for zero-shot image retrieval

  • To train the baseline CNN models, run the scripts in DIML/scripts/baselines. The checkpoints are saved in Training_Results folder. For example:
cd DIML/
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh
  • To train the supervised ViT and self-supervised ViT:
cp -r ssl-vit-retrieval/architectures/* DIML/ssl-vit-retrieval/architectures/
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh --arch vits
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh --arch dino
  • To test the models, first edit the checkpoint paths in test_diml.py, then run
CUDA_VISIBLE_DEVICES=0 ./scripts/diml/test_diml.sh cub200
dataset Loss SSL-ViT-download
CUB Margin cub_ssl-vit-margin.pth
CUB Proxy-NCA cub_ssl-vit-proxynca.pth
CUB Multi-Similarity cub_ssl-vit-ms.pth
Cars-196 Margin cars_ssl-vit-margin.pth
Cars-196 Proxy-NCA cars_ssl-vit-proxynca.pth
Cars-196 Multi-Similarity cars_ssl-vit-ms.pth

Acknowledgement

The code is based on:

Owner
Prarthana Bhattacharyya
Ph.D. Candidate @WISELab-UWaterloo
Prarthana Bhattacharyya
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

THUML: Machine Learning Group @ THSS 149 Dec 19, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022