网络协议2天集训

Overview

网络协议2天集训

抓包工具安装

Wireshark

wireshark下载地址

Tcpdump

  1. CentOS
yum install tcpdump -y
  1. Ubuntu
apt-get install tcpdump -y

k8s抓包测试环境

查看虚拟网卡veth pair

查看网桥cni0上的虚拟网卡

[master]# yum install bridge-utils -y
[master]# brctl show
bridge name     bridge id               STP enabled     interfaces
cni0            8000.822a0551fe51       no              veth01d2bc26
                                                        veth1b7415be
                                                        veth48059492
                                                        veth6174f7d6
                                                        veth6a56ab55
                                                        vethf3807a14
                                                        vethfbd1eb75
docker0         8000.024218847f20       no

查找容器网卡对应的主机上veth pair

比如,容器tea-6fb46d899f-4zkt2的IP地址是10.244.0.60:

[[email protected] conf]# kubectl describe pod tea-6fb46d899f-4zkt2 | grep IP
IP:           10.244.0.60

它的MAC地址是B2:AD:3A:6E:3A:4F,如下:

[[email protected] conf]# kubectl exec -it tea-6fb46d899f-4zkt2 -- sh
/ $ ip addr
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue state UP 
    link/ether b2:ad:3a:6e:3a:4f brd ff:ff:ff:ff:ff:ff
    inet 10.244.0.60/24 brd 10.244.0.255 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::b0ad:3aff:fe6e:3a4f/64 scope link 
       valid_lft forever preferred_lft forever

注意,它的eth0序号是17。那么,它对应的主机veth pair虚拟网卡就是vetha1f852ea:

[[email protected] wp]# ip link show | egrep "veth" | awk -F":" '{print $1": "$2}'
14:  [email protected]
15:  [email protected]
16:  [email protected]
17:  [email protected]
18:  [email protected]
19:  [email protected]
20:  [email protected]
21:  [email protected]

当需要抓包时,用tcpdump -i vetha1f852ea即可抓取到容器报文:

[[email protected] wp]# tcpdump -i vetha1f852ea
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on vetha1f852ea, link-type EN10MB (Ethernet), capture size 262144 bytes


19:51:49.847648 IP 10.244.0.60.54477 > 10.96.0.10.domain: 58561+ A? www.baidu.com.default.svc.cluster.local. (57)
19:51:49.847731 IP 10.244.0.60.54477 > 10.96.0.10.domain: 59710+ AAAA? www.baidu.com.default.svc.cluster.local. (57)
19:51:49.849113 IP 10.244.0.58.domain > 10.244.0.60.54477: 59710 NXDomain*- 0/1/0 (150)
19:51:49.849268 IP 10.244.0.58.domain > 10.244.0.60.54477: 58561 NXDomain*- 0/1/0 (150)

跨L3三层vxlan网络抓包

当172.27.0.11主机上访问172.27.16.10主机上的10.244.1.3容器时,IP、MAC地址的获取如下:

Underlay层的IP与MAC地址

在源主机上执行ifconfig,从eth0上即可看到Underlay源IP为172.27.0.11,以及Underlay源MAC为52:54:00:c2:ee:db:

[[email protected] wp]# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.27.0.11  netmask 255.255.240.0  broadcast 172.27.15.255
        inet6 fe80::5054:ff:fec2:eedb  prefixlen 64  scopeid 0x20<link>
        ether 52:54:00:c2:ee:db  txqueuelen 1000  (Ethernet)
        RX packets 783420  bytes 872472212 (832.0 MiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 462834  bytes 135019947 (128.7 MiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

在目的主机上执行同样步骤,获取到Underlay目的IP为172.27.16.10:

[[email protected] ~]# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.27.16.10  netmask 255.255.240.0  broadcast 172.27.31.255
        inet6 fe80::5054:ff:fe4e:502  prefixlen 64  scopeid 0x20<link>
        ether 52:54:00:4e:05:02  txqueuelen 1000  (Ethernet)
        RX packets 39103520  bytes 6692916434 (6.2 GiB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 1169194048  bytes 117270853999 (109.2 GiB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

需要注意,Underlay目的MAC并不是52:54:00:4e:05:02!Underlay目的MAC实际上是交换机的MAC地址fe:ee:32:07:ea:07:

[[email protected] net]# arp -v
Address                  HWtype  HWaddress           Flags Mask            Iface
gateway                  ether   fe:ee:32:07:ea:07   C                     eth0

这样,Underlay层的4个地址都已得到!

Overlay层的IP与MAC地址

目标容器的IP地址是10.244.1.3,但MAC地址却不能是容器的MAC地址,而必须是flannel.1的地址,因为flannel程序需要将Underlay层剥离,同时修改Overlay层,所以目标MAC地址其实是2a:3c:a0:e1:a9:b6:

[[email protected] net]# arp -v
Address                  HWtype  HWaddress           Flags Mask            Iface
10.244.1.0               ether   2a:3c:a0:e1:a9:b6   CM                    flannel.1

而源IP地址与MAC要根据路由规则来。比如,访问10.244.1.3是通过flannel.1网卡进行的:

[[email protected] net]# ip route
default via 172.27.0.1 dev eth0
10.244.1.0/24 via 10.244.1.0 dev flannel.1 onlink
172.27.0.0/20 dev eth0 proto kernel scope link src 172.27.0.11

而flannel.1虚拟网卡的IP地址则是10.244.0.0:

[[email protected] net]# ifconfig flannel.1
flannel.1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1450
        inet 10.244.0.0  netmask 255.255.255.255  broadcast 10.244.0.0
ether 8e:5c:79:80:cd:cc  txqueuelen 0  (Ethernet)
[[email protected] net]# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.27.0.11  netmask 255.255.240.0  broadcast 172.27.15.255
ether 52:54:00:c2:ee:db  txqueuelen 1000  (Ethernet)

它的MAC地址则是8e:5c:79:80 💿 cc。

常见网络编码

ASCII编码

参见wiki,如果打不开,可以查看下表:

控制字符

二进制 十进制 十六进制 缩写 Unicode表示法 脱出字符表示法 名称/意义
0000 0000 0 00 NUL ^@ 空字符(Null)
0000 0001 1 01 SOH ^A 标题开始
0000 0010 2 02 STX ^B 本文开始
0000 0011 3 03 ETX ^C 本文结束
0000 0100 4 04 EOT ^D 传输结束
0000 0101 5 05 ENQ ^E 请求
0000 0110 6 06 ACK ^F 确认回应
0000 0111 7 07 BEL ^G 响铃
0000 1000 8 08 BS ^H 退格
0000 1001 9 09 HT ^I 水平定位符号
0000 1010 10 0A LF ^J 换行键
0000 1011 11 0B VT ^K 垂直定位符号
0000 1100 12 0C FF ^L 换页键
0000 1101 13 0D CR ^M CR (字符)
0000 1110 14 0E SO ^N 取消变换(Shift out)
0000 1111 15 0F SI ^O 启用变换(Shift in)
0001 0000 16 10 DLE ^P 跳出数据通讯
0001 0001 17 11 DC1 ^Q 设备控制一(XON 激活软件速度控制)
0001 0010 18 12 DC2 ^R 设备控制二
0001 0011 19 13 DC3 ^S 设备控制三(XOFF 停用软件速度控制)
0001 0100 20 14 DC4 ^T 设备控制四
0001 0101 21 15 NAK ^U 确认失败回应
0001 0110 22 16 SYN ^V 同步用暂停
0001 0111 23 17 ETB ^W 区块传输结束
0001 1000 24 18 CAN ^X 取消
0001 1001 25 19 EM ^Y 连线介质中断
0001 1010 26 1A SUB ^Z 替换
0001 1011 27 1B ESC ^[ 退出键
0001 1100 28 1C FS ^\ 文件分割符
0001 1101 29 1D GS ^] 组群分隔符
0001 1110 30 1E RS ^^ 记录分隔符
0001 1111 31 1F US ^_ 单元分隔符
0111 1111 127 7F DEL ^? Delete字符

可显示字符

二进制 十进制 十六进制 图形
0010 0000 32 20 (space)
0010 0001 33 21 !
0010 0010 34 22 "
0010 0011 35 23 #
0010 0100 36 24 $
0010 0101 37 25 %
0010 0110 38 26 &
0010 0111 39 27 '
0010 1000 40 28 (
0010 1001 41 29 )
0010 1010 42 2A *
0010 1011 43 2B +
0010 1100 44 2C ,
0010 1101 45 2D -
0010 1110 46 2E .
0010 1111 47 2F /
0011 0000 48 30 0
0011 0001 49 31 1
0011 0010 50 32 2
0011 0011 51 33 3
0011 0100 52 34 4
0011 0101 53 35 5
0011 0110 54 36 6
0011 0111 55 37 7
0011 1000 56 38 8
0011 1001 57 39 9
0011 1010 58 3A :
0011 1011 59 3B ;
0011 1100 60 3C <
0011 1101 61 3D =
0011 1110 62 3E >
0011 1111 63 3F ?
二进制 十进制 十六进制 图形
0100 0000 64 40 @
0100 0001 65 41 A
0100 0010 66 42 B
0100 0011 67 43 C
0100 0100 68 44 D
0100 0101 69 45 E
0100 0110 70 46 F
0100 0111 71 47 G
0100 1000 72 48 H
0100 1001 73 49 I
0100 1010 74 4A J
0100 1011 75 4B K
0100 1100 76 4C L
0100 1101 77 4D M
0100 1110 78 4E N
0100 1111 79 4F O
0101 0000 80 50 P
0101 0001 81 51 Q
0101 0010 82 52 R
0101 0011 83 53 S
0101 0100 84 54 T
0101 0101 85 55 U
0101 0110 86 56 V
0101 0111 87 57 W
0101 1000 88 58 X
0101 1001 89 59 Y
0101 1010 90 5A Z
0101 1011 91 5B [
0101 1100 92 5C \
0101 1101 93 5D ]
0101 1110 94 5E ^
0101 1111 95 5F _
二进制 十进制 十六进制 图形
0110 0000 96 60 `
0110 0001 97 61 a
0110 0010 98 62 b
0110 0011 99 63 c
0110 0100 100 64 d
0110 0101 101 65 e
0110 0110 102 66 f
0110 0111 103 67 g
0110 1000 104 68 h
0110 1001 105 69 i
0110 1010 106 6A j
0110 1011 107 6B k
0110 1100 108 6C l
0110 1101 109 6D m
0110 1110 110 6E n
0110 1111 111 6F o
0111 0000 112 70 p
0111 0001 113 71 q
0111 0010 114 72 r
0111 0011 115 73 s
0111 0100 116 74 t
0111 0101 117 75 u
0111 0110 118 76 v
0111 0111 119 77 w
0111 1000 120 78 x
0111 1001 121 79 y
0111 1010 122 7A z
0111 1011 123 7B {
0111 1100 124 7C
0111 1101 125 7D }
0111 1110 126 7E ~
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022