[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

Related tags

Deep LearningDoDNet
Overview

DoDNet

This repo holds the pytorch implementation of DoDNet:

DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets. (https://arxiv.org/pdf/2011.10217.pdf)

Requirements

Python 3.7
PyTorch==1.4.0
Apex==0.1
batchgenerators

Usage

0. Installation

  • Clone this repo
git clone https://github.com/jianpengz/DoDNet.git
cd DoDNet

1. MOTS Dataset Preparation

Before starting, MOTS should be re-built from the serveral medical organ and tumor segmentation datasets

Partial-label task Data source
Liver data
Kidney data
Hepatic Vessel data
Pancreas data
Colon data
Lung data
Spleen data
  • Download and put these datasets in dataset/0123456/.
  • Re-spacing the data by python re_spacing.py, the re-spaced data will be saved in 0123456_spacing_same/.

The folder structure of dataset should be like

dataset/0123456_spacing_same/
├── 0Liver
|    └── imagesTr
|        ├── liver_0.nii.gz
|        ├── liver_1.nii.gz
|        ├── ...
|    └── labelsTr
|        ├── liver_0.nii.gz
|        ├── liver_1.nii.gz
|        ├── ...
├── 1Kidney
├── ...

2. Model

Pretrained model is available in checkpoint

3. Training

  • cd `a_DynConv/' and run
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_port=$RANDOM train.py \
--train_list='list/MOTS/MOTS_train.txt' \
--snapshot_dir='snapshots/dodnet' \
--input_size='64,192,192' \
--batch_size=2 \
--num_gpus=2 \
--num_epochs=1000 \
--start_epoch=0 \
--learning_rate=1e-2 \
--num_classes=2 \
--num_workers=8 \
--weight_std=True \
--random_mirror=True \
--random_scale=True \
--FP16=False

4. Evaluation

CUDA_VISIBLE_DEVICES=0 python evaluate.py \
--val_list='list/MOTS/MOTS_test.txt' \
--reload_from_checkpoint=True \
--reload_path='snapshots/dodnet/MOTS_DynConv_checkpoint.pth' \
--save_path='outputs/' \
--input_size='64,192,192' \
--batch_size=1 \
--num_gpus=1 \
--num_workers=2

5. Post-processing

python postp.py --img_folder_path='outputs/dodnet/'

6. Citation

If this code is helpful for your study, please cite:

@inproceedings{zhang2021dodnet,
  title={DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets},
  author={Zhang, Jianpeng and Xie, Yutong and Xia, Yong and Shen, Chunhua},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={},
  year={2021}
}

Contact

Jianpeng Zhang ([email protected])

Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022