Spectral Tensor Train Parameterization of Deep Learning Layers

Overview

Spectral Tensor Train Parameterization of Deep Learning Layers

This repository is the official implementation of our AISTATS 2021 paper titled "Spectral Tensor Train Parameterization of Deep Learning Layers" by Anton Obukhov, Maxim Rakhuba, Alexander Liniger, Zhiwu Huang, Stamatios Georgoulis, Dengxin Dai, and Luc Van Gool [arXiv] [PMLR].

It demonstrates how to perform low-rank neural network reparameterization and its stable training in a compressed form. The code provides all experiments (GAN and Image Classification) from the paper (see configs/aistats21 directory) with the following types of reparameterizations: SNGAN, SRGAN, SVDP, or STTP.

STTP teaser

Installation

All experiments can be reproduced on a single 11Gb GPU.

Clone the repository, then create a new virtual environment, and install python dependencies into it:

python3 -m venv venv_sttp
source venv_sttp/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements.txt

In case of problems with generic requirements, fall back to requirements_reproducibility.txt.

Logging

The code performs logging to the console, tensorboard file in the experiment log directory, and also Weights and Biases (wandb). Upon the first run, please enter your wandb credentials, which can be obtained by registering a free account with the service.

Creating Environment Config

The training script allows specifying multiple yml config files, which will be concatenated during execution. This is done to separate experiment configs from environment configs. To start running experiments, create your own config file with a few environment settings, similar to configs/env_lsf.yml. Generally, you only need to update paths; see other fields explained in the config reference.

Training

Choose a preconfigured experiment from any of the configs/aistats21 directories, or compose your own config using the config reference, and run the following command:

CUDA_VISIBLE_DEVICES=0 python -m src.train --cfg configs/env_yours.yml --cfg configs/experiment.yml

Poster

STTP poster

Citation

Please cite our work if you found it useful:

@InProceedings{obukhov2021spectral,
  title={Spectral Tensor Train Parameterization of Deep Learning Layers},
  author={Obukhov, Anton and Rakhuba, Maxim and Liniger, Alexander and Huang, Zhiwu and Georgoulis, Stamatios and Dai, Dengxin and Van Gool, Luc},
  booktitle={Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
  pages={3547--3555},
  year={2021},
  editor={Banerjee, Arindam and Fukumizu, Kenji},
  volume={130},
  series={Proceedings of Machine Learning Research},
  month={13--15 Apr},
  publisher={PMLR},
  pdf={http://proceedings.mlr.press/v130/obukhov21a/obukhov21a.pdf},
  url={http://proceedings.mlr.press/v130/obukhov21a.html}
}

License

This software is released under a CC-BY-NC 4.0 license, which allows personal and research use only. For a commercial license, please contact the authors. You can view a license summary here.

Portions of source code taken from external sources are annotated with links to original files and their corresponding licenses.

Acknowledgements

This work was supported by Toyota Motor Europe and was carried out at the TRACE Lab at ETH Zurich (Toyota Research on Automated Cars in Europe - Zurich).

Owner
Anton Obukhov
CV+ML PhD student with industrial past. Every fork is for a reason.
Anton Obukhov
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022