Naszilla is a Python library for neural architecture search (NAS)

Overview

License

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your own NAS algorithm, and then easily compare it with eleven algorithms across three benchmarks.

This repository contains the official code for the following three papers:

Paper README Blog Post
A Study on Encodings for Neural Architecture Search encodings.md Blog Post
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search bananas.md Blog Post
Exploring the Loss Landscape in Neural Architecture Search local_search.md Blog Post

Installation

Clone this repository and install its requirements (which includes nasbench, nas-bench-201, and nasbench301). It may take a few minutes.

git clone https://github.com/naszilla/naszilla
cd naszilla
cat requirements.txt | xargs -n 1 -L 1 pip install
pip install -e .

You might need to replace line 32 of src/nasbench301/surrogate_models/surrogate_models.py with a new path to the configspace file:

self.config_loader = utils.ConfigLoader(os.path.expanduser('~/naszilla/src/nasbench301/configspace.json'))

Next, download the nas benchmark datasets (either with the terminal commands below, or from their respective websites (nasbench, nas-bench-201, and nasbench301). The versions recommended for use with naszilla are nasbench_only108.tfrecord, NAS-Bench-201-v1_0-e61699.pth, and nasbench301_models_v0.9.zip. If you use a different version, you might need to edit some of the naszilla code.

# these files are 0.5GB, 2.1GB, and 1.6GB, respectively
wget https://storage.googleapis.com/nasbench/nasbench_only108.tfrecord
wget https://ndownloader.figshare.com/files/25506206?private_link=7d47bf57803227af4909 -O NAS-Bench-201-v1_0-e61699.pth
wget https://ndownloader.figshare.com/files/24693026 -O nasbench301_models_v0.9.zip
unzip nasbench301_models_v0.9.zip

Place the three downloaded benchmark data files in ~/nas_benchmark_datasets (or choose another directory and edit line 15 of naszilla/nas_benchmarks.py accordingly).

Now you have successfully installed all of the requirements to run eleven NAS algorithms on three benchmark search spaces!

Test Installation

You can test the installation by running these commands:

cd naszilla
python naszilla/run_experiments.py --search_space nasbench_101 --algo_params all_algos --queries 30 --trials 1
python naszilla/run_experiments.py --search_space nasbench_201 --algo_params all_algos --queries 30 --trials 1
python naszilla/run_experiments.py --search_space nasbench_301 --algo_params all_algos --queries 30 --trials 1

These experiments should finish running within a few minutes.

Run NAS experiments on NASBench-101/201/301 search spaces

cd naszilla
python naszilla/run_experiments.py --search_space nasbench_201 --dataset cifar100 --queries 100 --trials 100

This will test several NAS algorithms against each other on the NASBench-201 search space. Note that NASBench-201 allows you to specify one of three datasets: cifar10, cifar100, or imagenet. To customize your experiment, open naszilla/params.py. Here, you can change the algorithms and their hyperparameters. For details on running specific methods, see these docs.

Contributions

Contributions are welcome!

Reproducibility

If you have any questions about reproducing an experiment, please open an issue or email [email protected].

Citation

Please cite our papers if you use code from this repo:

@inproceedings{white2020study,
  title={A Study on Encodings for Neural Architecture Search},
  author={White, Colin and Neiswanger, Willie and Nolen, Sam and Savani, Yash},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}

@inproceedings{white2021bananas,
  title={BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search},
  author={White, Colin and Neiswanger, Willie and Savani, Yash},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}

@inproceedings{white2021exploring,
  title={Exploring the Loss Landscape in Neural Architecture Search},
  author={White, Colin and Nolen, Sam and Savani, Yash},
  booktitle={Uncertainty in Artificial Intelligence},
  organization={PMLR},
  year={2021}
}

Contents

This repo contains encodings for neural architecture search, a variety of NAS methods (including BANANAS, a neural predictor Bayesian optimization method, and local search for NAS), and an easy interface for using multiple NAS benchmarks.

Encodings:

encodings

BANANAS:

adj_train adj_test path_train path_test

Local search:

local_search

Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023