Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Overview

Big Vision

This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and TensorFlow Datasets for scalable input pipelines in the Cloud.

The open-sourcing of this codebase has two main purposes:

  1. Publishing the code of research projects developed in this codebase (see a list below).
  2. Providing a strong starting point for running large-scale vision experiments on Google Cloud TPUs, which should scale seamlessly and out-of-the box from a single TPU core to a distributed setup with up to 2048 TPU cores.

Note, that despite being TPU-centric, our codebase should in general support CPU, GPU and single-host multi-GPU training, thanks to JAX' well-executed and transparent support for multiple backends.

big_vision aims to support research projects at Google. We are unlikely to work on feature requests or accept external contributions, unless they were pre-approved (ask in an issue first). For a well-supported transfer-only codebase, see also vision_transformer.

The following research projects were originally conducted in the big_vision codebase:

Architecture research

Multimodal research

Knowledge distillation

Misc

  • Are we done with ImageNet?, by Lucas Beyer*, Olivier J. Hénaff*, Alexander Kolesnikov*, Xiaohua Zhai*, and Aäron van den Oord*

Codebase high-level organization and principles in a nutshell

The main entry point is a trainer module, which typically does all the boilerplate related to creating a model and an optimizer, loading the data, checkpointing and training/evaluating the model inside a loop. We provide the canonical trainer train.py in the root folder. Normally, individual projects within big_vision fork and customize this trainer.

All models, evaluators and preprocessing operations live in the corresponding subdirectories and can often be reused between different projects. We encourage compatible APIs within these directories to facilitate reusability, but it is not strictly enforced, as individual projects may need to introduce their custom APIs.

We have a powerful configuration system, with the configs living in the configs/ directory. Custom trainers and modules can seamlessly extend/modify the configuration options.

Training jobs are robust to interruptions and will resume seamlessly from the last saved checkpoint (assuming user provides the correct --workdir path).

Each configuration file contains a comment at the top with a COMMAND snippet to run it, and some hint of expected runtime and results. See below for more details, but generally speaking, running on a GPU machine involves calling python -m COMMAND while running on TPUs, including multi-host, involves

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all
  --command "bash big_vision/run_tpu.sh COMMAND"

See instructions below for more details on how to use Google Cloud TPUs.

Current and future contents

The first release contains the core part of pre-training, transferring, and evaluating classification models at scale on Cloud TPU VMs.

Features and projects we plan to release in the near future, in no particular order:

  • ImageNet-21k in TFDS.
  • MLP-Mixer.
  • Loading misc public models used in our publications (NFNet, MoCov3, DINO).
  • Contrastive Image-Text model training and evaluation as in LiT and CLIP.
  • "Patient and consistent" distillation.
  • Memory-efficient Polyak-averaging implementation.
  • Advanced JAX compute and memory profiling. We are using internal tools for this, but may eventually add support for the publicly available ones.

We will continue releasing code of our future publications developed within big_vision here.

Non-content

The following exist in the internal variant of this codebase, and there is no plan for their release:

  • Regular regression tests for both quality and speed. They rely heavily on internal infrastructure.
  • Advanced logging, monitoring, and plotting of experiments. This also relies heavily on internal infrastructure. However, we are open to ideas on this and may add some in the future, especially if implemented in a self-contained manner.
  • Not yet published, ongoing research projects.

Running on Cloud TPU VMs

Create TPU VMs

To create a single machine with 8 TPU cores, follow the following Cloud TPU JAX document: https://cloud.google.com/tpu/docs/run-calculation-jax

To support large-scale vision research, more cores with multiple hosts are recommended. Below we provide instructions on how to do it.

First, create some useful variables, which we be reused:

export NAME="a name of the TPU deployment, e.g. my-tpu-machine"
export ZONE="GCP geographical zone, e.g. europe-west4-a"
export GS_BUCKET_NAME="Name of the storage bucket, e.g. my_bucket"

The following command line will create TPU VMs with 32 cores, 4 hosts.

gcloud alpha compute tpus tpu-vm create $NAME --zone $ZONE --accelerator-type v3-32 --version tpu-vm-tf-2.8.0

Install big_vision on TPU VMs

Fetch the big_vision repository, copy it to all TPU VM hosts, and install dependencies.

git clone --branch=master https://github.com/google-research/big_vision
gcloud alpha compute tpus tpu-vm scp --recurse big_vision/big_vision $NAME: --worker=all --zone=$ZONE
gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "bash big_vision/run_tpu.sh"

Download and prepare TFDS datasets

Everything in this section you need to do only once, and, alternatively, you can also do it on your local machine and copy the result to the cloud bucket. For convenience, we provide instructions on how to prepare data using Cloud TPUs.

Download and prepare TFDS datasets using a single worker. Seven TFDS datasets used during evaluations will be generated under ~/tensorflow_datasets/ (should take 10-15 minutes in total).

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=0 --command "bash big_vision/run_tpu.sh big_vision.tools.download_tfds_datasets cifar10 cifar100 oxford_iiit_pet oxford_flowers102 cars196 dtd uc_merced"

Copy the datasets to GS bucket, to make them accessible to all TPU workers.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=0 --command "rm -r ~/tensorflow_datasets/downloads && gsutil cp -r ~/tensorflow_datasets gs://$GS_BUCKET_NAME"

If you want to integrate other public or custom datasets, i.e. imagenet2012, please follow the official guideline.

Pre-trained models

For the full list of pre-trained models check out the load function defined in the same module as the model code. And for example config on how to use these models, see configs/transfer.py.

Run the transfer script on TPU VMs

The following command line fine-tunes a pre-trained vit-i21k-augreg-b/32 model on cifar10 dataset.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "TFDS_DATA_DIR=gs://$GS_BUCKET_NAME/tensorflow_datasets bash big_vision/run_tpu.sh big_vision.train --config big_vision/configs/transfer.py:model=vit-i21k-augreg-b/32,dataset=cifar10,crop=resmall_crop --workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'` --config.lr=0.03"

Run the train script on TPU VMs

To train your own big_vision models on a large dataset, e.g. imagenet2012 (prepare the TFDS dataset), run the following command line.

gcloud alpha compute tpus tpu-vm ssh $NAME --zone=$ZONE --worker=all --command "TFDS_DATA_DIR=gs://$GS_BUCKET_NAME/tensorflow_datasets bash big_vision/run_tpu.sh big_vision.train --config big_vision/configs/bit_i1k.py  --workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'`"

ViT baseline

We provide a well-tuned ViT-S/16 baseline in the config file named vit_s16_i1k.py. It achieves 76.5% accuracy on ImageNet validation split in 90 epochs of training, being a strong and simple starting point for research on the ViT models.

Please see our arXiv note for more details and if this baseline happens to by useful for your research, consider citing

@article{vit_baseline,
  url = {https://arxiv.org/abs/2205.01580},
  author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
  title = {Better plain ViT baselines for ImageNet-1k},
  journal={arXiv preprint arXiv:2205.01580},
  year = {2022},
}

Citing the codebase

If you found this codebase useful for your research, please consider using the following BibTEX to cite it:

@misc{big_vision,
  author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
  title = {Big Vision},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/google-research/big_vision}}
}

Disclaimer

This is not an official Google Product.

Owner
Google Research
Google Research
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022