Unsupervised Image to Image Translation with Generative Adversarial Networks

Overview

Unsupervised Image to Image Translation with Generative Adversarial Networks

Paper: Unsupervised Image to Image Translation with Generative Adversarial Networks

Requirements

  • TensorFlow 1.0.0
  • TensorLayer 1.3.11
  • CUDA 8
  • Ubuntu

Dataset

  • Before training the network, please prepare the data
  • CelebA download
  • Cropped SVHN download
  • MNIST download, and put to data/mnist_png

Usage

Step 1: Learning shared feature

python3 train.py --train_step="ac_gan" --retrain=1

Step 2: Learning image encoder

python3 train.py --train_step="imageEncoder" --retrain=1

Step 3: Translation

python3 translate_image.py
  • Samples of all steps will be saved to data/samples/

Network

Want to use different datasets?

  • in train.py and translate_image.py modify the name of dataset flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, obama_hillary]")
  • write your own data_loader in data_loader.py
You might also like...
The pytorch implementation of  DG-Font: Deformable Generative Networks for Unsupervised Font Generation
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

NR-GAN: Noise Robust Generative Adversarial Networks
NR-GAN: Noise Robust Generative Adversarial Networks

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020) This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

PyTorch implementations of Generative Adversarial Networks.
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Comments
  • Where can I get “obama_hillary” dataset

    Where can I get “obama_hillary” dataset

    I’m adaping your code

    Now I’m tring to replacement faces

    Is “obama_hillary” is custom dataset? Or public dataset

    Let me know where can I get “obama_hillary”

    Thanks.

    opened by dreamegg 0
  • What is the version of tensorflow?

    What is the version of tensorflow?

    Hi,donghao, I am running this project but I find there are so many errors at the beginning of my training, e.g. Traceback (most recent call last): File "train.py", line 362, in tf.app.run() File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 48, in run _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "train.py", line 355, in main train_ac_gan() File "train.py", line 98, in train_ac_gan g_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(d_logits_fake, tf.ones_like(d_logits_fake))) File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/nn_impl.py", line 149, in sigmoid_cross_entropy_with_logits labels, logits) File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/nn_ops.py", line 1512, in _ensure_xent_args "named arguments (labels=..., logits=..., ...)" % name) ValueError: Only call sigmoid_cross_entropy_with_logits with named arguments (labels=..., logits=..., ...)

    I guess these errors are due to differences between mine and yours,so could you please tell me what is your version of tensorflow?

    opened by zzw1123 3
  • Is the output image size of 256 x 256 an option – or is just 64 x 64 px possible?

    Is the output image size of 256 x 256 an option – or is just 64 x 64 px possible?

    Hey it's me again, browsing through your other repos i found this gem – seems fun! A few months ago i've tested another gender swap network written in TF, but the output resolution was hardcoded and i couldn't figure out how to change it (with my limited knowledge of TF). Your version again seems a lot easier to read – due to the usage of the Tensorlayer library?

    I'm using the celebA dataset and have left all thetf.flags by default. So the default image size is 64 x 64px but i've seen that you've also written quite a few lines in train.py and model.py for a 256 x 256px option.

    if FLAGS.image_size == 64:
        generator = model.generator
        discriminator = model.discriminator
        imageEncoder = model.imageEncoder
    # elif FLAGS.image_size == 256:
    #     generator = model.generator_256
    #     discriminator = model.discriminator_256
    #     imageEncoder = model.imageEncoder_256
    else:
        raise Exception("image_size should be 64 or 256")
    
    ################## 256x256x3
    def generator_256(inputs, is_train=True, reuse=False):
    (...)
    def discriminator_256(inputs, is_train=True, reuse=False):
    (...)
    

    Since the second if-statement (elif FLAGS.image_size == 256:) is commented out and never changes the default 64x64px model generator and encoder, setting flags.DEFINE_integer("image_size", ...) in train.py to 256 doesn't really change the size - is this correct?

    I've tried to uncomment the code and enable the elif line but then ran into this error: ValueError: Shapes (64, 64, 64, 256) and (64, 32, 32, 256) are not compatible

    You've added generator_256, discriminator_256 and imageEncoder_256 to model.py so i'm wondering if you just have just experimented with this image size and then discarded the option (and just left the 64x64 image_size option) or if i'm missing something here...

    There is also a commented out flag for output_size – but this variable doesn't show up anywhere else so i guess it's from a previous version of your code: # flags.DEFINE_integer("output_size", 64, "The size of the output images to produce [64]")

    And this one is also non-functional: # flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]")


    I just wondered if it's possible to crank up the training and output resolution to 256x256px (and maybe finish the training process this year – when i get my 1080 Ti 😎).

    Will try to finish the 64x64px first and save the model-.npz files for later, but it would be interesting to know if the mentioned portions of your code are still functional.

    Thanks!

    opened by subzerofun 1
Releases(0.3)
Owner
Hao
Assistant Professor @ Peking University
Hao
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation (CIKM'17)

RATE: Overcoming Noise and Sparsity of Textual Features in Real-Time Location Estimation This is the implementation of RATE: Overcoming Noise and Spar

Yu Zhang 5 Feb 10, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021