[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Overview

Attr2Font

Introduction

This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes.

Teaser

Paper: arXiv | Research Gate
Supplementary Material: link
Video: link
Code: GitHub

Abstract

Font design is now still considered as an exclusive privilege of professional designers, whose creativity is not possessed by existing software systems. Nevertheless, we also notice that most commercial font products are in fact manually designed by following specific requirements on some attributes of glyphs, such as italic, serif, cursive, width, angularity, etc. Inspired by this fact, we propose a novel model, Attribute2Font, to automatically create fonts by synthesizing visually pleasing glyph images according to user-specified attributes and their corresponding values. To the best of our knowledge, our model is the first one in the literature which is capable of generating glyph images in new font styles, instead of retrieving existing fonts, according to given values of specified font attributes. Specifically, Attribute2Font is trained to perform font style transfer between any two fonts conditioned on their attribute values. After training, our model can generate glyph images in accordance with an arbitrary set of font attribute values. Furthermore, a novel unit named Attribute Attention Module is designed to make those generated glyph images better embody the prominent font attributes. Considering that the annotations of font attribute values are extremely expensive to obtain, a semi-supervised learning scheme is also introduced to exploit a large number of unlabeled fonts. Experimental results demonstrate that our model achieves impressive performance on many tasks, such as creating glyph images in new font styles, editing existing fonts, interpolation among different fonts, etc.

Model Architecture

Architecture

Demonstration

Demo

Prerequisites

  • Linux
  • CPU or NVIDIA GPU + CUDA cuDNN
  • Python 3
  • PyTorch 1.0+

Get Started

Installation

  1. Install PyTorch, torchvison and dependencies from https://pytorch.org
  2. Clone this repo:
    git clone https://github.com/hologerry/Attr2Font
    cd Attr2Font
  3. Download the official pre-trained vgg19 model: vgg19-dcbb9e9d.pth, and put it under this project root folder

Datasets

Download the dataset from PKU Disk, Google Drive or MEGA and put it into the data/:

data/
    explor_all/
        image/
        attributes.txt/

| This dataset is constructed by O’Donovan et al. Exploratory Font Selection Using Crowdsourced Attributes. TOG 2014

Model Training

python main.py --phase train

Model Testing

python main.py --phase test

Model Interpolation

python main.py --phase test_interp --test_epoch EPOCH

Citation:

If you use this code or find our work is helpful, please consider citing our work:

@article{WangSIGGRAPH2020,
  author = {Yizhi Wang*, Yue Gao*, Zhouhui Lian},
  title = {Attribute2Font: Creating Fonts You Want From Attributes},
  journal = {ACM Trans. Graph.},
  year = {2020}
}

| * Denotes equal contribution

Copyright

The code and dataset are only allowed for PERSONAL and ACADEMIC usage.

Owner
Yue Gao
Researcher at Microsoft Research Asia
Yue Gao
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022