PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

Overview

DosGAN-PyTorch

PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

Dependency:

Python 2.7

PyTorch 0.4.0

Usage:

Multiple identity translation

  1. Downloading Facescrub dataset following http://www.vintage.winklerbros.net/facescrub.html, and save it to root_dir.

  2. Splitting training and testing sets into train_dir and val_dir:

    $ python split2train_val.py root_dir train_dir val_dir

  3. Train a classifier for domain feature extraction and save it to dosgan_cls:

    $ python main_dosgan.py --mode cls --model_dir dosgan_cls --train_data_path train_dir --test_data_path val_dir

  4. Train DosGAN:

    $ python main_dosgan.py --mode train --model_dir dosgan --cls_save_dir dosgan_cls/models --train_data_path train_dir --test_data_path val_dir

  5. Train DosGAN-c:

    $ python main_dosgan.py --mode train --model_dir dosgan_c --cls_save_dir dosgan_cls/models --non_conditional false --train_data_path train_dir --test_data_path val_dir

  6. Test DosGAN:

    $ python main_dosgan.py --mode test --model_dir dosgan_c --cls_save_dir dosgan_cls/models --train_data_path train_dir --test_data_path val_dir

  7. Test DosGAN-c:

    $ python main_dosgan.py --mode test --model_dir dosgan_c --cls_save_dir dosgan_cls/models --non_conditional false --train_data_path train_dir --test_data_path val_dir

Other mutliple domain translation

  1. For other kinds of dataset, you can place train set and test set like:

    data
    ├── YOUR_DATASET_train_dir
        ├── damain1
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain2
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain3
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ...
    
    data
    ├── YOUR_DATASET_val_dir
        ├── damain1
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain2
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ├── domain3
        |   ├── 1.jpg
        |   ├── 2.jpg
        |   └── ...
        ...
    
  2. Giving multiple season translation for example (season dataset). Train a classifier for season domain feature extraction and save it to dosgan_season_cls:

    $ python main_dosgan.py --mode cls --model_dir dosgan_season_cls --ft_num 64 --c_dim 4 --image_size 256 --train_data_path season_train_dir --test_data_path season_val_dir

  3. Train DosGAN for multiple season translation:

    $ python main_dosgan.py --mode train --model_dir dosgan_season --cls_save_dir dosgan_season_cls/models --ft_num 64 --c_dim 4 --image_size 256 --lambda_fs 0.15 --num_iters 300000 --train_data_path season_train_dir --test_data_path season_val_dir

Results:

1. Multiple identity translation

# Results of DosGAN:

# Results of DosGAN-c:

2. Multiple season translation:

Owner
Ph.D. Candidate of University of Science and Technology of China
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022