8-week curriculum for AI Builders

Overview

curriculum

8-week curriculum for AI Builders

สารบัญ

Week 1 - บทที่ 1 - Machine Learning คืออะไร

ในบทเรียนนี้เราจะเรียนรู้ว่า Artificial Intelligence (AI), Machine Learning (ML) และ Deep Learning (DL) คืออะไร เหมือนกันหรือแตกต่างกันอย่างไร เราจะเรียนรู้ส่วนประกอบของระบบ machine learning และวิธีการเทรน machine learning model ด้วยตัวอย่างจำแนกรูปภาพอาหารไทย 48 ชนิดจากชุดข้อมูล FoodyDudy หลังจากนั้นเราจะเห็นว่าส่วนประกอบและวิธีการเทรนนี้ถูกใช้กับข้อมูลชนิดอื่นๆ เช่น ข้อความ (texts) และตาราง (tabular data) ได้อย่างไรบ้าง

บทเรียนนี้ปรับแต่งและเพิ่มเติมจาก fastai Practical Deep Learning for Coders v4 part1 - Lesson 1 เพื่อให้เหมาะกับโครงการ AI Builders

Video: YouTube

Notebooks: All Parts

Week 2 - บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่

ในปัจจุบันชุดข้อมูลที่มีพร้อมทั้งปริมาณและคุณภาพเป็นส่วนสำคัญในการสร้าง ML models ในบทเรียนนี้เราจะเรียนรู้วิธีการหาข้อมูลมาเทรนโมเดลของเราทั้งจากชุดข้อมูล open data, web scraping, หรือสร้างขึ้นมาเองจากโมเดลและโค้ด open source ทั้งนี้การหาข้อมูลมาเทรนโมเดลจากแหล่งข้อมูลสาธารณะที่กล่าวมานั้นเราต้องให้ความสำคัญเรื่องลิขสิทธิ์และจริยธรรม (แม้แต่โมเดลเองก็สร้างข้อมูลที่ผิดลิขสิทธิ์-จริยธรรมได้; เรียนเพิ่มเติมในบทที่ 7)

Video: YouTube

Notebooks: All Parts

Week 3 - บทที่ 3 - Stochastic Gradient Descent ตั้งแต่เริ่มต้น

ในบทเรียนนี้ เราจะทำการสร้างวิธีที่โมเดลของเราเรียนรู้ในบทเรียนที่แล้วๆมา เรียกว่า stochastic gradient descent ขึ้นมาเองตั้งแต่ต้นโดยใช้เพียงแค่ Pytorch สำหรับ linear algebra และการทำ partial derivatives เท่านั้น ด้วยตัวอย่างการจำแนกรูปภาพตัวเลข 3 และ 7 ออกจากกัน

บทเรียนแปล-สรุปมาจาก 04_mnist_basics.ipynb ของ fastai ผู้ที่สนใจสามารถไปติดตามบทเรียนต้นทางได้ที่ course.fast.ai

Video: YouTube

Notebooks: All Parts

Track - Vision

Week 4 - 4v Image Classification

ในบทเรียนนี้เราจะมาลองสร้างโมเดล Image classification เพื่อแยกพันธุ์ของน้องหมาโดยใช้เทคนิค Transfer learning ด้วยไลบรารี่ต่างๆ ได้แก่ FastAI, Pytorch และ Pytorch Lightning นอกจากนั้นเราจะมาดูองค์ประกอบของการใช้ Pytorch และการใช้ Image augmentation ด้วยไลบรารี่ torchvision

Video: Part 1, Part 2, Part 3, Part 4

Slides (หน้า 1-33): Google slide, pdf

Notebooks: Part 1, Part 2

Week 5 - 5v Object Detection

ในบทเรียนนี้เราจะลองสร้างโมเดล Object detection ด้วยเทคนิค Transfer learning โดยใช้ไลบรารี่ FastAI และ Pytorch กัน เราจะมาดูหน้าตาของการสร้างชุดข้อมูล Object detection และไปดูเครื่องมือต่างๆที่ใช้สร้างชุดข้อมูล Object detection

Video: Part 1, Part 2, Part 3

Slides (หน้า 34-44): Google slide, pdf

Notebooks: Object Detection, Semantic Segmentation

Week 6 - 6v GANs and Advanced Topics

TBA ในสัปดาห์นี้เราจะมาดูการใช้ Deep learning กับ tasks ต่างๆเช่น sequence recognition และ GAN กัน

Video: [TBA]

Slides (หน้า 45-48): Google slide, pdf

Notebooks: [TBA]

Track - Texts

Week 4 - บทที่ 4n - NLP คืออะไร? บทเรียนจากอดีตสู่ปัจจุบัน

ในบทนี้เราจะเรียนเกี่ยวกับ NLP ตั้งแต่พื้นฐาน ไปจนถึง NLP ในยุคปัจจุบันว่ามีการพัฒนาไปอย่างไรบ้าง พร้อมทั้งยกตัวอย่างการทำ text classification (การจำแนกข้อความ) ด้วยวิธีตั้งแต่อดีตยันปัจจุบัน

Video: YouTube

Slides: Google Slides, pdf

Notebooks: All Parts

Week 5 - บทที่ 5n - การเทรนโมเดลบน Hugging Face พาร์ท 1

ในปัจจุบันการทำงานด้าน NLP มักจะนิยมใช้งาน Deep Learning ในการแก้ปัญหาโจทย์ที่มีความซับซ้อนสูง โดย Library ที่เป็นที่นิยมในปัจจุบันคือ Hugging Face (transformers, datasets, tokenizers) โดยในบทเรียนนี้เราจะมาเรียนการใช้งาน Hugging Face เพื่อเทรนโมเดลในงานด้าน NLP!

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Week 6 - บทที่ 6n - การเทรนโมเดลบน Hugging Face พาร์ท 2

หลังจากที่เราได้เรียนรู้พื้นฐานของการใช้งาน Hugging Face แล้ว เราจะมาเทรนโมเดลเพื่องานที่ซับซ้อนมากขึ้น เช่น Machine Translation (เครื่องแปลภาษา), Question Answering (ระบบถาม-ตอบ) และ Sentence Representation (การแปลงข้อความให้เป็นข้อมูล)

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Track - Tabular Data

Week 4 - บทที่ 4t - Introduction to Tabular Data, Correlation and Regression

การสร้างสมการความสัมพันธ์ (correlation) เพื่อทำนายตัวแปรประเภทตัวเลข (numerical) เพื่อนำไปใช้ในการหาความสัมพันธ์หรือพยากรณ์ เช่น การหาความสัมพันธ์ระหว่างตัวแปรที่มีผลต่อยอดขาย หรือ ทำนายพยากรณ์ยอดขายในอนาคต

Video: Part 1, Part 2, Part 3

Notebooks: Part 1, Part 2, Part 3

Week 5 - บทที่ 5t - Classification

การสร้างสมการความสัมพันธ์ เพื่อทำนายตัวแปรประเภทกลุ่ม/ชนิด (categorical) เพื่อใช้ในการทำนายหรือเลือกทางเลือก เช่น ทำนายว่าลูกค้าคนไหนจะหยุดใช้บริการ ทำนายว่าลูกค้าคนไหน เมื่อส่งคูปองไปแล้วจะใช้ หรือ ทำนายว่าเครื่องจักรจะเสียหรือไม่

Video: Part 1, Part 2

Notebooks: Part 1, Part 2

Week 6 - บทที่ 6t - Similarity, Recommendation and Clustering

การวิเคราะห์ความคลายคลึงและการแบ่งกลุ่มข้อมูล เพื่อนำไปใช้ในการแนะนำสินค้าหรือเนื้อหาที่ลูกค้าสนใจ เช่น Shopee แนะนำสินค้าที่เราสนใจ หรือ spotify แนะนำเพลงที่ผู้ฟังน่าจะอยากฟังต่อไป รวมถึงการนำข้อมูลมาใช้ในการแบ่งกลุ่มลูกค้าที่มีความสนใจเหมือนกันสำหรับนำไปทำการตลาดเฉพาะกลุ่ม

Video: YouTube

Notebooks: TBA

Week 7 - บทที่ 7 - จริยธรรมปัญญาประดิษฐ์

เมื่อปัญญาประดิษฐ์เข้ามามีบทบาทในชีวิตประจำวัน รวมถึงใช้ในการทำงานสาขาต่างๆ อาทิ ช่วยตรวจโรค ช่วยตรวจจับผู้กระทำผิด หรือช่วยตัดสินค่าตอบแทน/บทลงโทษ ฯลฯ จะเห็นได้ว่าปัญญาประดิษฐ์เกี่ยวข้องกับประเด็นทางสังคมและส่งผลกระทบต่อคนเป็นจำนวนมาก บางครั้งปัญญาประดิษฐ์มีการตัดสินใจที่ผิดพลาด ส่งผลกระทบกับชีวิตของคน หลายครั้งปัญญาประดิษฐ์เป็นส่วนหนึ่งของการเผยแพร่อคติโดยที่ผู้พัฒนาคาดไม่ถึง หรือบางกรณีเป็นการจงใจนำปัญญาประดิษฐ์ไปใช้เพื่อการทำร้ายผู้อื่น การพัฒนาปัญญาประดิษฐ์จึงต้องคำนึงถึงหลักจริยธรรมปัญญาประดิษฐ์หรือ AI Ethics ในการพัฒนาเทคโนโลยีอย่างมีความรับผิดชอบ ในสัปดาห์นี้ เราจะมาทำความเข้าใจว่าปัญญาประดิษฐ์ก็สามารถมีอคติในการรับและเผยแพร่ข้อมูลได้อย่างไร รวมถึงคำนึงถึงโอกาสที่เทคโนโลยีจะถูกนำไปใช้ในทางที่ผิดและเราจะหาทางป้องกันความเสี่ยงได้อย่างไร

บทเรียนนี้แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5 ของ fastai Practical Deep Learning for Coders v4 part1 โดย Rachel Thomas

Video: YouTube

Slides: pdf

Week 8 - บทที่ 8 - Prototype Deployment

ในบทเรียนนี้จะแนะนำวิธีการ Deploy โปรเจค ML / AI โดยจะนำ source code ที่เขียนไว้ใน notebook มาสร้างเป็นโปรเจค Streamlit, เรียนรู้ widget ต่างๆของ Streamlit เพื่อใช้ทำ Visualization ไม่ว่าจะเป็นการนำผลลัพธ์จากการรันโมเดลมาพล็อตเป็นกราฟ ตาราง แสดงรูปภาพที่เกี่ยวข้อง และอื่นๆ รวมโค้ดทั้งหมดออกเป็นเป็นโปรเจค จากนั้น Deploy โปรเจคไปยัง Heroku, Streamlit Cloud หรือ Cloud Server อื่นๆ เช่น DigitalOcean / AWS / Google Cloud / Azure

กิตติกรรมประกาศ - Acknowledgements

ส่วนหนึ่งของบทเรียนของ AI Builders ทำการดัดแปลง-แก้ไข-ต่อเติมจาก fastai Practical Deep Learning for Coders v4 part1 ตามลิขสิทธิ์ GNU General Public License v3.0 เพื่อให้เหมาะแก่นักเรียนผู้ใช้ภาษาไทยเป็นภาษาแรก ได้แก่ บทที่ 1 และ 2 (ปรับแต่งจาก Lesson 1 พร้อมเพิ่มเติมเนื้อหา), 3 (ปรับแต่งจาก Lesson 3 และ Lesson 4) และ 7 (แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5)

We adapted and augmented some lessons from fastai Practical Deep Learning for Coders v4 part1 for our curriculum to suit our students whose first language is Thai, namely Lesson 1 and 2 (adapted from Lesson 1; augmented our original contents), Lesson 3 (adapted from Lesson 3 and Lesson 4), Lesson 7 (translated from Lesson 5 and added localized examples).

You might also like...
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

Releases(slides_prototype_deployment)
Owner
AI Builders
a program for kids who want to build good AI
AI Builders
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022