8-week curriculum for AI Builders

Overview

curriculum

8-week curriculum for AI Builders

สารบัญ

Week 1 - บทที่ 1 - Machine Learning คืออะไร

ในบทเรียนนี้เราจะเรียนรู้ว่า Artificial Intelligence (AI), Machine Learning (ML) และ Deep Learning (DL) คืออะไร เหมือนกันหรือแตกต่างกันอย่างไร เราจะเรียนรู้ส่วนประกอบของระบบ machine learning และวิธีการเทรน machine learning model ด้วยตัวอย่างจำแนกรูปภาพอาหารไทย 48 ชนิดจากชุดข้อมูล FoodyDudy หลังจากนั้นเราจะเห็นว่าส่วนประกอบและวิธีการเทรนนี้ถูกใช้กับข้อมูลชนิดอื่นๆ เช่น ข้อความ (texts) และตาราง (tabular data) ได้อย่างไรบ้าง

บทเรียนนี้ปรับแต่งและเพิ่มเติมจาก fastai Practical Deep Learning for Coders v4 part1 - Lesson 1 เพื่อให้เหมาะกับโครงการ AI Builders

Video: YouTube

Notebooks: All Parts

Week 2 - บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่

ในปัจจุบันชุดข้อมูลที่มีพร้อมทั้งปริมาณและคุณภาพเป็นส่วนสำคัญในการสร้าง ML models ในบทเรียนนี้เราจะเรียนรู้วิธีการหาข้อมูลมาเทรนโมเดลของเราทั้งจากชุดข้อมูล open data, web scraping, หรือสร้างขึ้นมาเองจากโมเดลและโค้ด open source ทั้งนี้การหาข้อมูลมาเทรนโมเดลจากแหล่งข้อมูลสาธารณะที่กล่าวมานั้นเราต้องให้ความสำคัญเรื่องลิขสิทธิ์และจริยธรรม (แม้แต่โมเดลเองก็สร้างข้อมูลที่ผิดลิขสิทธิ์-จริยธรรมได้; เรียนเพิ่มเติมในบทที่ 7)

Video: YouTube

Notebooks: All Parts

Week 3 - บทที่ 3 - Stochastic Gradient Descent ตั้งแต่เริ่มต้น

ในบทเรียนนี้ เราจะทำการสร้างวิธีที่โมเดลของเราเรียนรู้ในบทเรียนที่แล้วๆมา เรียกว่า stochastic gradient descent ขึ้นมาเองตั้งแต่ต้นโดยใช้เพียงแค่ Pytorch สำหรับ linear algebra และการทำ partial derivatives เท่านั้น ด้วยตัวอย่างการจำแนกรูปภาพตัวเลข 3 และ 7 ออกจากกัน

บทเรียนแปล-สรุปมาจาก 04_mnist_basics.ipynb ของ fastai ผู้ที่สนใจสามารถไปติดตามบทเรียนต้นทางได้ที่ course.fast.ai

Video: YouTube

Notebooks: All Parts

Track - Vision

Week 4 - 4v Image Classification

ในบทเรียนนี้เราจะมาลองสร้างโมเดล Image classification เพื่อแยกพันธุ์ของน้องหมาโดยใช้เทคนิค Transfer learning ด้วยไลบรารี่ต่างๆ ได้แก่ FastAI, Pytorch และ Pytorch Lightning นอกจากนั้นเราจะมาดูองค์ประกอบของการใช้ Pytorch และการใช้ Image augmentation ด้วยไลบรารี่ torchvision

Video: Part 1, Part 2, Part 3, Part 4

Slides (หน้า 1-33): Google slide, pdf

Notebooks: Part 1, Part 2

Week 5 - 5v Object Detection

ในบทเรียนนี้เราจะลองสร้างโมเดล Object detection ด้วยเทคนิค Transfer learning โดยใช้ไลบรารี่ FastAI และ Pytorch กัน เราจะมาดูหน้าตาของการสร้างชุดข้อมูล Object detection และไปดูเครื่องมือต่างๆที่ใช้สร้างชุดข้อมูล Object detection

Video: Part 1, Part 2, Part 3

Slides (หน้า 34-44): Google slide, pdf

Notebooks: Object Detection, Semantic Segmentation

Week 6 - 6v GANs and Advanced Topics

TBA ในสัปดาห์นี้เราจะมาดูการใช้ Deep learning กับ tasks ต่างๆเช่น sequence recognition และ GAN กัน

Video: [TBA]

Slides (หน้า 45-48): Google slide, pdf

Notebooks: [TBA]

Track - Texts

Week 4 - บทที่ 4n - NLP คืออะไร? บทเรียนจากอดีตสู่ปัจจุบัน

ในบทนี้เราจะเรียนเกี่ยวกับ NLP ตั้งแต่พื้นฐาน ไปจนถึง NLP ในยุคปัจจุบันว่ามีการพัฒนาไปอย่างไรบ้าง พร้อมทั้งยกตัวอย่างการทำ text classification (การจำแนกข้อความ) ด้วยวิธีตั้งแต่อดีตยันปัจจุบัน

Video: YouTube

Slides: Google Slides, pdf

Notebooks: All Parts

Week 5 - บทที่ 5n - การเทรนโมเดลบน Hugging Face พาร์ท 1

ในปัจจุบันการทำงานด้าน NLP มักจะนิยมใช้งาน Deep Learning ในการแก้ปัญหาโจทย์ที่มีความซับซ้อนสูง โดย Library ที่เป็นที่นิยมในปัจจุบันคือ Hugging Face (transformers, datasets, tokenizers) โดยในบทเรียนนี้เราจะมาเรียนการใช้งาน Hugging Face เพื่อเทรนโมเดลในงานด้าน NLP!

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Week 6 - บทที่ 6n - การเทรนโมเดลบน Hugging Face พาร์ท 2

หลังจากที่เราได้เรียนรู้พื้นฐานของการใช้งาน Hugging Face แล้ว เราจะมาเทรนโมเดลเพื่องานที่ซับซ้อนมากขึ้น เช่น Machine Translation (เครื่องแปลภาษา), Question Answering (ระบบถาม-ตอบ) และ Sentence Representation (การแปลงข้อความให้เป็นข้อมูล)

Video: YouTube

Slides: Google Slides, pdf

Notebooks: Part 1, Part 2, Part 3

Track - Tabular Data

Week 4 - บทที่ 4t - Introduction to Tabular Data, Correlation and Regression

การสร้างสมการความสัมพันธ์ (correlation) เพื่อทำนายตัวแปรประเภทตัวเลข (numerical) เพื่อนำไปใช้ในการหาความสัมพันธ์หรือพยากรณ์ เช่น การหาความสัมพันธ์ระหว่างตัวแปรที่มีผลต่อยอดขาย หรือ ทำนายพยากรณ์ยอดขายในอนาคต

Video: Part 1, Part 2, Part 3

Notebooks: Part 1, Part 2, Part 3

Week 5 - บทที่ 5t - Classification

การสร้างสมการความสัมพันธ์ เพื่อทำนายตัวแปรประเภทกลุ่ม/ชนิด (categorical) เพื่อใช้ในการทำนายหรือเลือกทางเลือก เช่น ทำนายว่าลูกค้าคนไหนจะหยุดใช้บริการ ทำนายว่าลูกค้าคนไหน เมื่อส่งคูปองไปแล้วจะใช้ หรือ ทำนายว่าเครื่องจักรจะเสียหรือไม่

Video: Part 1, Part 2

Notebooks: Part 1, Part 2

Week 6 - บทที่ 6t - Similarity, Recommendation and Clustering

การวิเคราะห์ความคลายคลึงและการแบ่งกลุ่มข้อมูล เพื่อนำไปใช้ในการแนะนำสินค้าหรือเนื้อหาที่ลูกค้าสนใจ เช่น Shopee แนะนำสินค้าที่เราสนใจ หรือ spotify แนะนำเพลงที่ผู้ฟังน่าจะอยากฟังต่อไป รวมถึงการนำข้อมูลมาใช้ในการแบ่งกลุ่มลูกค้าที่มีความสนใจเหมือนกันสำหรับนำไปทำการตลาดเฉพาะกลุ่ม

Video: YouTube

Notebooks: TBA

Week 7 - บทที่ 7 - จริยธรรมปัญญาประดิษฐ์

เมื่อปัญญาประดิษฐ์เข้ามามีบทบาทในชีวิตประจำวัน รวมถึงใช้ในการทำงานสาขาต่างๆ อาทิ ช่วยตรวจโรค ช่วยตรวจจับผู้กระทำผิด หรือช่วยตัดสินค่าตอบแทน/บทลงโทษ ฯลฯ จะเห็นได้ว่าปัญญาประดิษฐ์เกี่ยวข้องกับประเด็นทางสังคมและส่งผลกระทบต่อคนเป็นจำนวนมาก บางครั้งปัญญาประดิษฐ์มีการตัดสินใจที่ผิดพลาด ส่งผลกระทบกับชีวิตของคน หลายครั้งปัญญาประดิษฐ์เป็นส่วนหนึ่งของการเผยแพร่อคติโดยที่ผู้พัฒนาคาดไม่ถึง หรือบางกรณีเป็นการจงใจนำปัญญาประดิษฐ์ไปใช้เพื่อการทำร้ายผู้อื่น การพัฒนาปัญญาประดิษฐ์จึงต้องคำนึงถึงหลักจริยธรรมปัญญาประดิษฐ์หรือ AI Ethics ในการพัฒนาเทคโนโลยีอย่างมีความรับผิดชอบ ในสัปดาห์นี้ เราจะมาทำความเข้าใจว่าปัญญาประดิษฐ์ก็สามารถมีอคติในการรับและเผยแพร่ข้อมูลได้อย่างไร รวมถึงคำนึงถึงโอกาสที่เทคโนโลยีจะถูกนำไปใช้ในทางที่ผิดและเราจะหาทางป้องกันความเสี่ยงได้อย่างไร

บทเรียนนี้แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5 ของ fastai Practical Deep Learning for Coders v4 part1 โดย Rachel Thomas

Video: YouTube

Slides: pdf

Week 8 - บทที่ 8 - Prototype Deployment

ในบทเรียนนี้จะแนะนำวิธีการ Deploy โปรเจค ML / AI โดยจะนำ source code ที่เขียนไว้ใน notebook มาสร้างเป็นโปรเจค Streamlit, เรียนรู้ widget ต่างๆของ Streamlit เพื่อใช้ทำ Visualization ไม่ว่าจะเป็นการนำผลลัพธ์จากการรันโมเดลมาพล็อตเป็นกราฟ ตาราง แสดงรูปภาพที่เกี่ยวข้อง และอื่นๆ รวมโค้ดทั้งหมดออกเป็นเป็นโปรเจค จากนั้น Deploy โปรเจคไปยัง Heroku, Streamlit Cloud หรือ Cloud Server อื่นๆ เช่น DigitalOcean / AWS / Google Cloud / Azure

กิตติกรรมประกาศ - Acknowledgements

ส่วนหนึ่งของบทเรียนของ AI Builders ทำการดัดแปลง-แก้ไข-ต่อเติมจาก fastai Practical Deep Learning for Coders v4 part1 ตามลิขสิทธิ์ GNU General Public License v3.0 เพื่อให้เหมาะแก่นักเรียนผู้ใช้ภาษาไทยเป็นภาษาแรก ได้แก่ บทที่ 1 และ 2 (ปรับแต่งจาก Lesson 1 พร้อมเพิ่มเติมเนื้อหา), 3 (ปรับแต่งจาก Lesson 3 และ Lesson 4) และ 7 (แปลเป็นภาษาไทยและเพิ่มเติมเนื้อหาจาก Lesson 5)

We adapted and augmented some lessons from fastai Practical Deep Learning for Coders v4 part1 for our curriculum to suit our students whose first language is Thai, namely Lesson 1 and 2 (adapted from Lesson 1; augmented our original contents), Lesson 3 (adapted from Lesson 3 and Lesson 4), Lesson 7 (translated from Lesson 5 and added localized examples).

You might also like...
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

Releases(slides_prototype_deployment)
Owner
AI Builders
a program for kids who want to build good AI
AI Builders
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022