Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

Overview

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021]

Open In Colab report report

SPEC: Seeing People in the Wild with an Estimated Camera,
Muhammed Kocabas, Chun-Hao Paul Huang, Joachim Tesch, Lea Müller, Otmar Hilliges, Michael J. Black,
International Conference on Computer Vision (ICCV), 2021

Features

SPEC is a camera-aware human body pose and shape estimation method. It both predicts the camera parameters and SMPL body model for a given image. CamCalib predicts the camera parameters. SPEC uses these parameters to predict SMPL body model parameters.

This implementation:

  • has the demo code for SPEC and CamCalib implemented in PyTorch.
  • achieves SOTA results in SPEC-SYN and SPEC-MTP datasets.
  • shows how to perform evaluation on SPEC-SYN and SPEC-MTP datasets.

Updates

  • 13/10/2021: Demo and evaluation code is released.

Getting Started

SPEC has been implemented and tested on Ubuntu 18.04 with python >= 3.7. If you don't have a suitable device, try running our Colab demo.

Clone the repo:

git clone https://github.com/mkocabas/SPEC.git

Install the requirements using virtualenv or conda:

# pip
source scripts/install_pip.sh

# conda
source scripts/install_conda.sh

Running the Demo

SPEC

First, you need to download the required data (i.e our trained model and SMPL model parameters). It is approximately 1GB. To do this you can just run:

source scripts/prepare_data.sh

Then, running the demo is as simple as:

python scripts/spec_demo.py \
  --image_folder data/sample_images \
  --output_folder logs/spec/sample_images

Sample demo output:

Here the green line is the horizon obtained using estimated camera parameters. On the right, the ground plane is visualized to show how accurate the global translation is.

CamCalib

If you are only interested in estimating the camera parameters of an image, run the CamCalib demo:

python scripts/camcalib_demo.py \
  --img_folder <input image folder> \
  --out_folder <output folder> \
  --show # visualize the raw network predictions

This script outputs a pickle file which contains the predicted camera parameters for each input image along with an output image which visualizes the camera parameters as a horizon line. Pickle file contains:

'vfov' : vertical field of view in radians
'f_pix': focal length in pixels
'pitch': pitch in radians
'roll' : roll in radians

Google Colab

Training

Training instructions will follow soon.

Datasets

Pano360, SPEC-MTP, and SPEC-SYN are new datasets introduced in our paper. You can download them from the Downloads section of our project page.

For Pano360 dataset, we have released the Flickr image ids which can be used to download images using FlickrAPI. We have provided a download script in this repo. Some of the images will be missing due to users deleting their photos. In this case, you can also use scrape_and_download function provided in the script to find and download more photos.

After downloading the SPEC-SYN, SPEC-MTP, Pano360, and 3DPW datasets, the data folder should look like:

data/
├── body_models
│   └── smpl
├── camcalib
│   └── checkpoints
├── dataset_extras
├── dataset_folders
│   ├── 3dpw
│   ├── pano360
│   ├── spec-mtp
│   └── spec-syn
├── sample_images
└── spec
    └── checkpoints

Evaluation

You can evaluate SPEC on SPEC-SYN, SPEC-MTP, and 3DPW datasets by running:

python scripts/spec_eval.py \
  --cfg data/spec/checkpoints/spec_config.yaml \
  --opts DATASET.VAL_DS spec-syn_spec-mtp_3dpw-test-cam

Running this script should give results reported in this table:

W-MPJPE PA-MPJPE W-PVE
SPEC-MTP 124.3 71.8 147.1
SPEC-SYN 74.9 54.5 90.5
3DPW 106.7 53.3 124.7

Citation

@inproceedings{SPEC:ICCV:2021,
  title = {{SPEC}: Seeing People in the Wild with an Estimated Camera},
  author = {Kocabas, Muhammed and Huang, Chun-Hao P. and Tesch, Joachim and M\"uller, Lea and Hilliges, Otmar and Black, Michael J.},
  booktitle = {Proc. International Conference on Computer Vision (ICCV)},
  pages = {11035--11045},
  month = oct,
  year = {2021},
  doi = {},
  month_numeric = {10}
}

License

This code is available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using this code you agree to the terms in the LICENSE. Third-party datasets and software are subject to their respective licenses.

References

We indicate if a function or script is borrowed externally inside each file. Here are some great resources we benefit:

Consider citing these works if you use them in your project.

Contact

For questions, please contact [email protected]

For commercial licensing (and all related questions for business applications), please contact [email protected].

Comments
  • Translation of the camera

    Translation of the camera

    I'd like to know if it's possible to get a translation of the camera. I've found the code just for rotation and focal length estimation.

    On this image https://github.com/mkocabas/SPEC/blob/master/docs/assets/spec_gif.gif the camera is placed in the world space somehow. How did you do this? Thanks.

    opened by Dene33 4
  • Segmentation fault (core dumped)

    Segmentation fault (core dumped)

    Hi~ When I run the command python scripts/spec_demo.py --batch_size 1 --image_folder data/sample_images --output_folder logs/spec/sample_images, I got the error as this: Segmentation fault (core dumped) I have no idea about it, could you help me, please?

    opened by JinkaiZheng 2
  • There is no flickr_photo_ids.npy

    There is no flickr_photo_ids.npy

    Hello author:

    After unzipping the spec-github-data.zip, there is no data/dataset_folders/pano360/flickr_photo_ids.npy. I don't know whether I find the right place, could you help me?

    Best regards.

    opened by songxujay 1
  • video demo

    video demo

    It's a great job. Is the video demo not available now? `def main(args):

    demo_mode = args.mode
    
    if demo_mode == 'video':
        raise NotImplementedError
    elif demo_mode == 'webcam':
        raise NotImplementedError`
    
    opened by FatherPrime 1
  • Fix PARE requirement in requirement.txt

    Fix PARE requirement in requirement.txt

    Thanks for sharing this work! Please fix the requirement in requirement.txt file of PARE. It should be (currently missing "git+" prefix): git+https://github.com/mkocabas/PARE.git

    opened by Omri-CG 1
  • get error horizon line by camcalib_demo.py

    get error horizon line by camcalib_demo.py

    all example_image seem get error result by camcalib_demo.py, look like this: COCO_val2014_000000326555 it seems the predicted horizon line shift by model,how should I solve this problem?

    opened by hhhlllyyy 0
  • feet fit accuracy

    feet fit accuracy

    I've encountered frequent problems that SPEC is having to fit the model to feet correctly:

    image image

    Is this the same problem as mentioned in the VIBE discussion: https://github.com/mkocabas/VIBE/issues/24#issuecomment-596714558 ? Have you tried to include the OpenPose feet keypoint predictions to the loss?

    Thanks for the great work!

    opened by smidm 0
  • Dataset npz interpretation

    Dataset npz interpretation

    Dear Muhammed,

    Thank you for this work and the datasets! I'm trying to interpret the data in the SPEC-SYN npz data files, but I'm not sure what each key means. Is there documentation? They are the following: ['imgname', 'center', 'scale', 'pose', 'shape', 'part', 'mmpose_keypoints', 'openpose', 'openpose_gt', 'S', 'focal_length', 'cam_rotmat', 'cam_trans', 'cam_center', 'cam_pitch', 'cam_roll', 'cam_hfov', 'cam_int', 'camcalib_pitch', 'camcalib_roll', 'camcalib_vfov', 'camcalib_f_pix']

    At this point, I'd just like to plot the 24 SMPL joints on the image. Based on the array shape, I assume 'S' contains the joints. Is cam_rotmat the rotation from world space to camera space? Is the cam_trans the position of the camera or the top right part of the extrinsic matrix? I assume for this plotting exercise I can ignore everything except S, cam_rotmat, cam_trans and cam_int. Still for some reason the points end up at at very wrong places. Maybe 'S' is something else? Or am I using the camera params wrong?

    Thanks! Istvan

    opened by isarandi 5
  • Colab notebook inaccesible

    Colab notebook inaccesible

    Hi,I tried accesing the colab notebook but wasn't able to access it.Would you be able to kindly suggest another way to run inference as I am currently working on a windows based CPU system.

    opened by sparshgarg23 0
  • Error during single dataset evaluation

    Error during single dataset evaluation

    I tried running the evaluation only for the 3DPW dataset with the following command:

    python scripts/spec_eval.py --cfg data/spec/checkpoints/spec_config.yaml --opts DATASET.VAL_DS 3dpw-test-cam 
    

    But it gives the following error:

    TypeError: test_step() missing 1 required positional argument: 'dataloader_nb'
    

    Fixed it by giving a default value for dataloader_nb for the test_step function in trainer.py:

    def test_step(self, batch, batch_nb, dataloader_nb=0):
        return self.validation_step(batch, batch_nb, dataloader_nb)
    

    The error occurs because we don't append dataloader_idx to args in evaluation_loop.py:

    if multiple_test_loaders or multiple_val_loaders:
        args.append(dataloader_idx)
    
    opened by umariqb 1
Owner
Muhammed Kocabas
Muhammed Kocabas
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023