Generative Adversarial Text to Image Synthesis

Overview

Text To Image Synthesis

This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the paper Generative Adversarial Text-to-Image Synthesis. This implementation is built on top of the excellent DCGAN in Tensorflow.

Plese star https://github.com/tensorlayer/tensorlayer

Model architecture

Image Source : Generative Adversarial Text-to-Image Synthesis Paper

Requirements

Datasets

  • The model is currently trained on the flowers dataset. Download the images from here and save them in 102flowers/102flowers/*.jpg. Also download the captions from this link. Extract the archive, copy the text_c10 folder and paste it in 102flowers/text_c10/class_*.

N.B You can downloads all data files needed manually or simply run the downloads.py and put the correct files to the right directories.

python downloads.py

Codes

  • downloads.py download Oxford-102 flower dataset and caption files(run this first).
  • data_loader.py load data for further processing.
  • train_txt2im.py train a text to image model.
  • utils.py helper functions.
  • model.py models.

References

Results

  • the flower shown has yellow anther red pistil and bright red petals.
  • this flower has petals that are yellow, white and purple and has dark lines
  • the petals on this flower are white with a yellow center
  • this flower has a lot of small round pink petals.
  • this flower is orange in color, and has petals that are ruffled and rounded.
  • the flower has yellow petals and the center of it is brown
  • this flower has petals that are blue and white.
  • these white flowers have petals that start off white in color and end in a white towards the tips.

License

Apache 2.0

Comments
  • ValueError: Object arrays cannot be loaded when allow_pickle=False

    ValueError: Object arrays cannot be loaded when allow_pickle=False

    File "train_txt2im.py", line 458, in main_train() File "train_txt2im.py", line 133, in main_train load_and_assign_npz(sess=sess, name=net_rnn_name, model=net_rnn) File "train_txt2im.py", line 458, in main_train() File "train_txt2im.py", line 133, in main_train load_and_assign_npz(sess=sess, name=net_rnn_name, model=net_rnn) File "/home/siddanath/importantforprojects/text-to-image/utils.py", line 20, in load_and_assign_npz params = tl.files.load_npz(name=name) File "/home/siddanath/importantforprojects/text-to-image/tensorlayer/files.py", line 600, in load_npz return d['params'] File "/home/siddanath/anaconda3/lib/python3.7/site-packages/numpy/lib/npyio.py", line 262, in getitem pickle_kwargs=self.pickle_kwargs) File "/home/siddanath/anaconda3/lib/python3.7/site-packages/numpy/lib/format.py", line 722, in read_array raise ValueError("Object arrays cannot be loaded when " ValueError: Object arrays cannot be loaded when allow_pickle=False

    opened by Siddanth-pai 2
  • Attempt to have a second RNNCell use the weights of a variable scope that already has weights

    Attempt to have a second RNNCell use the weights of a variable scope that already has weights

    I got a problem, how can I solve it?

    Attempt to have a second RNNCell use the weights of a variable scope that already has weights: 'rnnftxt/rnn/dynamic/rnn/basic_lstm_cell'; and the cell was not constructed as BasicLSTMCell(..., reuse=True). To share the weights of an RNNCell, simply reuse it in your second calculation, or create a new one with the argument reuse=True.

    opened by flsd201983 1
  • Next step after download.py

    Next step after download.py

    What is the next step to do after download.py? I tried python data_loader.py, but it has FileNotFoundError: FileNotFoundError: [Errno 2] No such file or directory: '/home/ly/src/lib/text-to-image/102flowers/text_c10'

    opened by arisliang 0
  • ValueError: invalid literal for int() with base 10: 'e' - when making inference

    ValueError: invalid literal for int() with base 10: 'e' - when making inference

    code -

    sample_sentence = ["a"] * int(sample_size/ni) + ["e"] * int(sample_size/ni) + ["i"] * int(sample_size/ni) + ["o"] * int(sample_size/ni) + ["u"] * int(sample_size/ni)

    for i, sentence in enumerate(sample_sentence): print("seed: %s" % sentence) sentence = preprocess_caption(sentence) sample_sentence[i] = [vocab.word_to_id(word) for word in nltk.tokenize.word_tokenize( sentence)] + [vocab.end_id] # add END_ID

    sample_sentence = tl.prepro.pad_sequences(sample_sentence, padding='post')
    
    img_gen, rnn_out = sess.run([net_g_res.outputs, net_rnn_res.outputs], feed_dict={
        t_real_caption: sample_sentence,
        t_z: sample_seed})
    
    save_images(img_gen, [ni, ni], 'samples/gen_samples/gen.png')
    
    opened by Akinleyejoshua 0
  • Excuse me, why is the flower dataset I test the result is very different from result.png

    Excuse me, why is the flower dataset I test the result is very different from result.png

    import tensorflow as tf import tensorlayer as tl from tensorlayer.layers import * from tensorlayer.prepro import * from tensorlayer.cost import * import numpy as np import scipy from scipy.io import loadmat import time, os, re, nltk

    from utils import * from model import * import model import pickle

    ###======================== PREPARE DATA ====================================### print("Loading data from pickle ...") import pickle with open("_vocab.pickle", 'rb') as f: vocab = pickle.load(f) with open("_image_train.pickle", 'rb') as f: _, images_train = pickle.load(f) with open("_image_test.pickle", 'rb') as f: _, images_test = pickle.load(f) with open("_n.pickle", 'rb') as f: n_captions_train, n_captions_test, n_captions_per_image, n_images_train, n_images_test = pickle.load(f) with open("_caption.pickle", 'rb') as f: captions_ids_train, captions_ids_test = pickle.load(f)

    images_train_256 = np.array(images_train_256)

    images_test_256 = np.array(images_test_256)

    images_train = np.array(images_train) images_test = np.array(images_test)

    ni = int(np.ceil(np.sqrt(batch_size))) save_dir = "checkpoint"

    t_real_image = tf.placeholder('float32', [batch_size, image_size, image_size, 3], name = 'real_image')

    t_real_caption = tf.placeholder(dtype=tf.int64, shape=[batch_size, None], name='real_caption_input')

    t_z = tf.placeholder(tf.float32, [batch_size, z_dim], name='z_noise') generator_txt2img = model.generator_txt2img_resnet

    net_rnn = rnn_embed(t_real_caption, is_train=False, reuse=False) net_g, _ = generator_txt2img(t_z, net_rnn.outputs, is_train=False, reuse=False, batch_size=batch_size)

    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tl.layers.initialize_global_variables(sess)

    net_rnn_name = os.path.join(save_dir, 'net_rnn.npz400.npz') net_cnn_name = os.path.join(save_dir, 'net_cnn.npz400.npz') net_g_name = os.path.join(save_dir, 'net_g.npz400.npz') net_d_name = os.path.join(save_dir, 'net_d.npz400.npz')

    net_rnn_res = tl.files.load_and_assign_npz(sess=sess, name=net_rnn_name, network=net_rnn)

    net_g_res = tl.files.load_and_assign_npz(sess=sess, name=net_g_name, network=net_g)

    sample_size = batch_size sample_seed = np.random.normal(loc=0.0, scale=1.0, size=(sample_size, z_dim)).astype(np.float32)

    n = int(sample_size / ni) sample_sentence = ["the flower shown has yellow anther red pistil and bright red petals."] * n +
    ["this flower has petals that are yellow, white and purple and has dark lines"] * n +
    ["the petals on this flower are white with a yellow center"] * n +
    ["this flower has a lot of small round pink petals."] * n +
    ["this flower is orange in color, and has petals that are ruffled and rounded."] * n +
    ["the flower has yellow petals and the center of it is brown."] * n +
    ["this flower has petals that are blue and white."] * n +
    ["these white flowers have petals that start off white in color and end in a white towards the tips."] * n

    for i, sentence in enumerate(sample_sentence): print("seed: %s" % sentence) sentence = preprocess_caption(sentence) sample_sentence[i] = [vocab.word_to_id(word) for word in nltk.tokenize.word_tokenize(sentence)] + [vocab.end_id] # add END_ID

    sample_sentence = tl.prepro.pad_sequences(sample_sentence, padding='post')

    img_gen, rnn_out = sess.run([net_g_res.outputs, net_rnn_res.outputs], feed_dict={ t_real_caption : sample_sentence, t_z : sample_seed})

    save_images(img_gen, [ni, ni], 'samples/gen_samples/gen.png')

    opened by keqkeq 0
  • Tensorflow 2.1, Tensorlayer 2.2 update

    Tensorflow 2.1, Tensorlayer 2.2 update

    Hello,

    are there any plans in the near future to update this git to the latest Tensorflow and Tensorlayer versions? I've been trying making the code run with backwards compat (compat.tf1. ...) but I've keep bumping on errors which are a bit too big of mouth full for me.

    Fyi: I've succesfully run the DCGAN Tensorlayer implementation with Tensorlayer 2.2 and a self build Tensorflow 2.1 (with 3.0 compute compatibility) from source in Python 3.7.

    So, an update would be greatly appreciated!

    opened by SadRebel1000 0
Releases(0.2)
Owner
Hao
Assistant Professor @ Peking University
Hao
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022