TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Overview

Decoupled Low-light Image Enhancement

Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2

1Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education, Hefei 230009, China

2School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China


TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement".

This paper has been accepted in the ACM Transactions on Multimedia Computing, Communications, and Applications

1 Abstract

The visual quality of photographs taken under imperfect lightness conditions can be degenerated by multiple factors, e.g., low lightness, imaging noise, color distortion and so on. Current low-light image enhancement models focus on the improvement of low lightness only, or simply deal with all the degeneration factors as a whole, therefore leading to a sub-optimal performance. In this paper, we propose to decouple the enhancement model into two sequential stages. The first stage focuses on improving the scene visibility based on a pixel-wise non-linear mapping. The second stage focuses on improving the appearance fidelity by suppressing the rest degeneration factors. The decoupled model facilitates the enhancement in two aspects. On the one hand, the whole low-light enhancement can be divided into two easier subtasks. The first one only aims to enhance the visibility. It also helps to bridge the large intensity gap between the low-light and normal-light images. In this way, the second subtask can be shaped as the local appearance adjustment. On the other hand, since the parameter matrix learned from the first stage is aware of the lightness distribution and the scene structure, it can be incorporated into the second stage as the complementary information. In the experiments, our model demonstrates the state-of-the-art performance in both qualitative and quantitative comparisons, compared with other low-light image enhancement models. In addition, the ablation studies also validate the effectiveness of our model in multiple aspects, such as model structure and loss function.

2 Demo

  • Image 1 image1
  • Image 2 image2
  • Image 3 image3
  • Image 4 image4
  • Image 5 image5

3 Test

Requirements: tf1.8, py3.6, numpy, PIL.

Please download the pre-trained models and test code from Google Drive, and then run python evaluate.py.

Please consider to cite this paper if you find this code helpful for your research:

@misc{hao2021decoupled,
      title={Decoupled Low-light Image Enhancement}, 
      author={Shijie Hao and Xu Han and Yanrong Guo and Meng Wang},
      year={2021},
      eprint={2111.14458},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Image Processing & Deep Learning
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023