Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

Related tags

Deep Learningacon
Overview

CVPR 2021 | Activate or Not: Learning Customized Activation.

This repository contains the official Pytorch implementation of the paper Activate or Not: Learning Customized Activation, CVPR 2021.

ACON

We propose a novel activation function we term the ACON that explicitly learns to activate the neurons or not. Below we show the ACON activation function and its first derivatives. β controls how fast the first derivative asymptotes to the upper/lower bounds, which are determined by p1 and p2.

Training curves

We show the training curves of different activations here.

TFNet

To show the effectiveness of the proposed acon family, we also provide an extreme simple toy funnel network (TFNet) made only by pointwise convolution and ACON-FReLU operators.

Main results

The following results are the ImageNet top-1 accuracy relative improvements compared with the ReLU baselines. The relative improvements of Meta-ACON are about twice as much as SENet.

The comparison between ReLU, Swish and ACON-C. We show improvements without additional amount of FLOPs and parameters:

Model FLOPs #Params. top-1 err. (ReLU) top-1 err. (Swish) top-1 err. (ACON)
ShuffleNetV2 0.5x 41M 1.4M 39.4 38.3 (+1.1) 37.0 (+2.4)
ShuffleNetV2 1.5x 299M 3.5M 27.4 26.8 (+0.6) 26.5 (+0.9)
ResNet 50 3.9G 25.5M 24.0 23.5 (+0.5) 23.2 (+0.8)
ResNet 101 7.6G 44.4M 22.8 22.7 (+0.1) 21.8 (+1.0)
ResNet 152 11.3G 60.0M 22.3 22.2 (+0.1) 21.2 (+1.1)

Next, by adding a negligible amount of FLOPs and parameters, meta-ACON shows sigificant improvements:

Model FLOPs #Params. top-1 err.
ShuffleNetV2 0.5x (meta-acon) 41M 1.7M 34.8 (+4.6)
ShuffleNetV2 1.5x (meta-acon) 299M 3.9M 24.7 (+2.7)
ResNet 50 (meta-acon) 3.9G 25.7M 22.0 (+2.0)
ResNet 101 (meta-acon) 7.6G 44.8M 21.0 (+1.8)
ResNet 152 (meta-acon) 11.3G 60.5M 20.5 (+1.8)

The simple TFNet without the SE modules can outperform the state-of-the art light-weight networks without the SE modules.

FLOPs #Params. top-1 err.
MobileNetV2 0.17 42M 1.4M 52.6
ShuffleNetV2 0.5x 41M 1.4M 39.4
TFNet 0.5 43M 1.3M 36.6 (+2.8)
MobileNetV2 0.6 141M 2.2M 33.3
ShuffleNetV2 1.0x 146M 2.3M 30.6
TFNet 1.0 135M 1.9M 29.7 (+0.9)
MobileNetV2 1.0 300M 3.4M 28.0
ShuffleNetV2 1.5x 299M 3.5M 27.4
TFNet 1.5 279M 2.7M 26.0 (+1.4)
MobileNetV2 1.4 585M 5.5M 25.3
ShuffleNetV2 2.0x 591M 7.4M 25.0
TFNet 2.0 474M 3.8M 24.3 (+0.7)

Trained Models

  • OneDrive download: Link
  • BaiduYun download: Link (extract code: 13fu)

Usage

Requirements

Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

Train:

python train.py  --train-dir YOUR_TRAINDATASET_PATH --val-dir YOUR_VALDATASET_PATH

Eval:

python train.py --eval --eval-resume YOUR_WEIGHT_PATH --train-dir YOUR_TRAINDATASET_PATH --val-dir YOUR_VALDATASET_PATH

Citation

If you use these models in your research, please cite:

@inproceedings{ma2021activate,
  title={Activate or Not: Learning Customized Activation},
  author={Ma, Ningning and Zhang, Xiangyu and Liu, Ming and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022