SoK: Vehicle Orientation Representations for Deep Rotation Estimation

Overview

SoK: Vehicle Orientation Representations for Deep Rotation Estimation

Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan

This is the official implementation for the paper SoK: Vehicle Orientation Representations for Deep Rotation Estimation

Model Diagram

Table of Conents

Envrionment Setup

Install required packages via conda

# create conda environment based on yml file
conda env update --file environment.yml
# activate conda environment
conda activate KITTI-Orientation

Clone git repo:

git clone [email protected]:umd-fire-coml/KITTI-orientation-learning.git

Training

Check training.sh for example training script

Training Parameter setup:

Training parameters can be configured using cmd arguments

  • --predict: Specify prediction target. Options are rot-y, alpha
  • --converter: Specify prediction method. Options are alpha, rot-y, tricosine, multibin, voting-bin, single-bin
  • --kitti_dir: path to kitti dataset directory. Its subdirectory should have training/ and testing/ Default path is dataset/
  • --training_record: root directory of all training record, parent of weights and logs directory. Default path is training_record
  • --resume: Resume from previous training under training_record directory
  • --add_pos_enc: Add positional encoding to input
  • --add_depth_map: Add depth map information to input

For all the training parameter setup, please using

python3 model/training.py -h

Training Result

Exp ID Target Loss Functions Additional Inputs Accuracy (%)
E1 rot-y L2 Loss - 90.490
E2 rot-y Angle Loss - 89.052
E3 alpha L2 Loss - 90.132
E4 Single Bin L2 Loss - 94.815
E5 Single Bin L2 Loss Pos Enc 94.277
E6 Single Bin L2 Loss Dep Map 93.952
E7 Voting Bins (4-Bin) L2 Loss - 93.609
E8 Tricosine L2 Loss - 94.249
E9 Tricosine L2 Loss Pos Enc 94.351
E10 Tricosine L2 Loss Dep Map 94.384
E11 2 Conf Bins L2(Bins,Confs) - 83.304
E12 4 Conf Bins L2(Bins,Confs) - 88.071
Owner
FIRE Capital One Machine Learning of the University of Maryland
FIRE Capital One Machine Learning is a Course-based Undergrad Research Experience that provides undergrad students with research experience in Machine Learning.
FIRE Capital One Machine Learning of the University of Maryland
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022