Simple (but Strong) Baselines for POMDPs

Overview

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs

Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specifically the recurrent model-free RL, for the following paper

Paper: arXiv Numeric Results: google drive

by Tianwei Ni, Benjamin Eysenbach and Ruslan Salakhutdinov.

Installation

First download this repo into your local directory (preferably on a cluster or a server) <local_path>. Then we recommend to use a virtual env to install all the dependencies. For example, we install using miniconda:

conda env create -f install.yml
conda activate pomdp

The yaml file includes all the dependencies (e.g. PyTorch, PyBullet) used in our experiments (including compared methods), but there are two exceptions:

  • To run Cheetah-Vel in meta RL, you have to install MuJoCo with a license
  • To run robust RL and generalization in RL experiments, you have to install roboschool.
    • We found it hard to install roboschool from scratch, therefore we provide a docker file roboschool.sif in google drive that contains roboschool and the other necessary libraries, adapted from SunBlaze repo.
    • To download and activate the docker file by singularity on a cluster (on a single server should be similar):
    # download roboschool.sif from the google drive to envs/rl-generalization/roboschool.sif
    # then run singularity shell
    singularity shell --nv -H <local_path>:/home envs/rl-generalization/roboschool.sif
    • Then you can test it by import roboschool in a python3 shell.

General Form to Run Our Implementation of Recurrent Model-Free RL and Compared Methods

Basically, we use .yml file in configs/ folder for each subarea of POMDPs. To run our implementation, in <local_path> simply use

export PYTHONPATH=${PWD}:$PYTHONPATH
python3 policies/main.py configs/<subarea>/<env_name>/<algo_name>.yml

where algo_name specifies the algorithm name:

  • sac_rnn and td3_rnn correspond to our implementation of recurrent model-free RL
  • ppo_rnn and a2c_rnn correspond to (Kostrikov, 2018) implementation of recurrent model-free RL
  • vrm corresponds to VRM compared in "standard" POMDPs
  • varibad corresponds the off-policy version of original VariBAD compared in meta RL
  • MRPO correspond to MRPO compared in robust RL

We have merged the prior methods above into our repository (there is no need to install other repositories), so that future work can use this single repository to run a number of baselines besides ours: A2C-GRU, PPO-GRU, VRM, VariBAD, MRPO. Since our code is heavily drawn from those prior works, we encourage authors to cite those prior papers or implementations. For the compared methods, we use their open-sourced implementation with their default hyperparameters.

Specific Running Commands for Each Subarea

Please see run_commands.md for details on running our implementation of recurrent model-free RL and also all the compared methods.

A Minimal Example to Run Our Implementation

Here we provide a stand-alone minimal example with the least dependencies to run our implementation of recurrent model-free RL!

Only requires PyTorch and PyBullet, no need to install MuJoCo or roboschool, no external configuration file.

Simply open the Jupyter Notebook example.ipynb and it contains the training and evaluation procedure on a toy POMDP environment (Pendulum-V). It only costs < 20 min to run the whole process.

Details of Our Implementation of Recurrent Model-Free RL: Decision Factors, Best Variants, Code Features

Please see our_details.md for more information on:

  • How to tune the decision factors discussed in the paper in the configuration files
  • How to tune the other hyperparameters that are also important to training
  • Where is the core class of our recurrent model-free RL and the RAM-efficient replay buffer
  • Our best variants in subarea and numeric results on all the bar charts and learning curves

Acknowledgement

Please see acknowledge.md for details.

Citation

If you find our code useful to your work, please consider citing our paper:

@article{ni2021recurrentrl,
  title={Recurrent Model-Free RL is a Strong Baseline for Many POMDPs},
  author={Ni, Tianwei and Eysenbach, Benjamin and Salakhutdinov, Ruslan},
  year={2021}
}

Contact

If you have any questions, please create an issue in this repo or contact Tianwei Ni ([email protected])

Owner
Tianwei V. Ni
Efficient coding excites me. Good research surprises me.
Tianwei V. Ni
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022