Hierarchical Few-Shot Generative Models

Overview

Hierarchical Few-Shot Generative Models

Giorgio Giannone, Ole Winther

This repo contains code and experiments for the paper Hierarchical Few-Shot Generative Models.


Settings

Clone the repo:

git clone https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models
cd hierarchical-few-shot-generative-models

Create and activate the conda env:

conda env create -f environment.yml
conda activate hfsgm

The code has been tested on Ubuntu 18.04, Python 3.6 and CUDA 11.3

We use wandb for visualization. The first time you run the code you will need to login.

Data

We provide preprocessed Omniglot dataset.

From the main folder, copy the data in data/omniglot_ns/:

wget https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models/releases/download/Omniglot/omni_train_val_test.pkl

For CelebA you need to download the dataset from here.

Dataset

In dataset we provide utilities to process and augment datasets in the few-shot setting. Each dataset is a large collection of small sets. Sets can be created dynamically. The dataset/base.py file collects basic info about the datasets. For binary datasets (omniglot_ns.py) we augment using flipping and rotations. For RGB datasets (celeba.py) we use only flipping.

Experiment

In experiment we implement scripts for model evaluation, experiments and visualizations.

  • attention.py - visualize attention weights and heads for models with learnable aggregations (LAG).
  • cardinality.py - compute ELBOs for different input set size: [1, 2, 5, 10, 20].
  • classifier_mnist.py - few-shot classifiers on MNIST.
  • kl_layer.py - compute KL over z and c for each layer in latent space.
  • marginal.py - compute approximate log-marginal likelihood with 1K importance samples.
  • refine_vis.py - visualize refined samples.
  • sampling_rgb.py - reconstruction, conditional, refined, unconditional sampling for RGB datasets.
  • sampling_transfer.py - reconstruction, conditional, refined, unconditional sampling on transfer datasets.
  • sampling.py - reconstruction, conditional, refined, unconditional sampling for binary datasets.
  • transfer.py - compute ELBOs on MNIST, DoubleMNIST, TripleMNIST.

Model

In model we implement baselines and model variants.

  • base.py - base class for all the models.
  • vae.py - Variational Autoencoder (VAE).
  • ns.py - Neural Statistician (NS).
  • tns.py - NS with learnable aggregation (NS-LAG).
  • cns.py - NS with convolutional latent space (CNS).
  • ctns.py - CNS with learnable aggregation (CNS-LAG).
  • hfsgm.py - Hierarchical Few-Shot Generative Model (HFSGM).
  • thfsgm.py - HFSGM with learnable aggregation (HFSGM-LAG).
  • chfsgm.py - HFSGM with convolutional latent space (CHFSGM).
  • cthfsgm.py - CHFSGM with learnable aggregation (CHFSGM-LAG).

Script

Scripts used for training the models in the paper.

To run a CNS on Omniglot:

sh script/main_cns.sh GPU_NUMBER omniglot_ns

Train a model

To train a generic model run:

python main.py --name {VAE, NS, CNS, CTNS, CHFSGM, CTHFSGM} \
               --model {vae, ns, cns, ctns, chfsgm, cthfsgm} \
               --augment \
               --dataset omniglot_ns \
               --likelihood binary \
               --hidden-dim 128 \
               --c-dim 32 \
               --z-dim 32 \
               --output-dir /output \
               --alpha-step 0.98 \
               --alpha 2 \
               --adjust-lr \
               --scheduler plateau \
               --sample-size {2, 5, 10} \
               --sample-size-test {2, 5, 10} \
               --num-classes 1 \
               --learning-rate 1e-4 \
               --epochs 400 \
               --batch-size 100 \
               --tag (optional string)

If you do not want to save logs, use the flag --dry_run. This flag will call utils/trainer_dry.py instead of trainer.py.


Acknowledgments

A lot of code and ideas borrowed from:

You might also like...
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

The implementation of PEMP in paper
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Releases(Omniglot)
Owner
Giorgio Giannone
Science is built up with data, as a house is with stones. But a collection of data is no more a science than a heap of stones is a house. (J.H. Poincaré)
Giorgio Giannone
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Learning Visual Words for Weakly-Supervised Semantic Segmentation

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Sup

Lixiang Ru 24 Oct 05, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022