Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

Overview

MetaAdaptRank

This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision.

CONTACT

For any question, please contact Si Sun by email [email protected] (respond to emails more quickly), we will try our best to solve :)

QUICKSTART

python 3.7
Pytorch 1.5.0

0/ Data Preparation

First download and prepare the following data into the data folder:

1 Contrastive Supervision Synthesis

1.1 Source-domain NLG training

  • We train two query generators (QG & ContrastQG) with the MS MARCO dataset using train_nlg.sh in the run_shells folder:

    bash prepro_nlg_dataset.sh
    
  • Optional arguments:

    --generator_mode            choices=['qg', 'contrastqg']
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --train_file                The path to the source-domain nlg training dataset
    --save_dir                  The path to save the checkpoints data; default: ../results
    

1.2 Target-domain NLG inference

  • The whole nlg inference pipline contains five steps:

    • 1.2.1/ Data preprocess
    • 1.2.2/ Seed query generation
    • 1.2.3/ BM25 subset retrieval
    • 1.2.4/ Contrastive doc pairs sampling
    • 1.2.5/ Contrastive query generation
  • 1.2.1/ Data preprocess. convert target-domain documents into the nlg format using prepro_nlg_dataset.sh in the preprocess folder:

    bash prepro_nlg_dataset.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --input_path            The path to the target dataset
    --output_path           The path to save the preprocess data; default: ../data/prepro_target_data
    
  • 1.2.2/ Seed query generation. utilize the trained QG model to generate seed queries for each target documents using nlg_inference.sh in the run_shells folder:

    bash nlg_inference.sh
    
  • Optional arguments:

    --generator_mode            choices='qg'
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --target_dataset_name       choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_load_dir        The path to the pretrained QG checkpoints.
    
  • 1.2.3/ BM25 subset retrieval. utilize BM25 to retrieve document subset according to the seed queries using do_subset_retrieve.sh in the bm25_retriever folder:

    bash do_subset_retrieve.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_folder      choices=['t5-small', 't5-base']
    
  • 1.2.4/ Contrastive doc pairs sampling. pairwise sample contrastive doc pairs from the BM25 retrieved subset using sample_contrast_pairs.sh in the preprocess folder:

    bash sample_contrast_pairs.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_folder      choices=['t5-small', 't5-base']
    
  • 1.2.5/ Contrastive query generation. utilize the trained ContrastQG model to generate new queries based on contrastive document pairs using nlg_inference.sh in the run_shells folder:

    bash nlg_inference.sh
    
  • Optional arguments:

    --generator_mode            choices='contrastqg'
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --target_dataset_name       choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_load_dir        The path to the pretrained ContrastQG checkpoints.
    

2 Meta Learning to Reweight

2.1 Data Preprocess

  • Prepare the contrastive synthetic supervision data (CTSyncSup) into the data/synthetic_data folder.

    • CTSyncSup_clueweb09
    • CTSyncSup_robust04
    • CTSyncSup_trec-covid

    >> example data format

  • Preprocess the target-domain datasets into the 5-fold cross-validation format using run_cv_preprocess.sh in the preprocess folder:

    bash run_cv_preprocess.sh
    
  • Optional arguments:

    --dataset_class         choices=['clueweb09', 'robust04', 'trec-covid']
    --input_path            The path to the target dataset
    --output_path           The path to save the preprocess data; default: ../data/prepro_target_data
    

2.2 Train and Test Models

  • The whole process of training and testing MetaAdaptRank contains three steps:

    • 2.2.1/ Meta-pretraining. The model is trained on synthetic weak supervision data, where the synthetic data are reweighted using meta-learning. The training fold of the target dataset is considered as target data that guides meta-reweighting.

    • 2.2.2/ Fine-tuning. The meta-pretrained model is continuously fine-tuned on the training folds of the target dataset.

    • 2.2.3/ Ensemble and Coor-Ascent. Coordinate Ascent is used to combine the last representation layers of all fine-tuned models, as LeToR features, with the retrieval scores from the base retriever.

  • 2.2.1/ Meta-pretraining using train_meta_bert.sh in the run_shells folder:

    bash train_meta_bert.sh
    

    Optional arguments for meta-pretraining:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --train_dir             The path to the synthetic weak supervision data
    --target_dir            The path to the target dataset
    --save_dir              The path to save the output files and checkpoints; default: ../results
    

    Complete optional arguments can be seen in config.py in the scripts folder.

  • 2.2.2/ Fine-tuning using train_metafine_bert.sh in the run_shells folder:

    bash train_metafine_bert.sh
    

    Optional arguments for fine-tuning:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --train_dir             The path to the target dataset
    --checkpoint_folder     The path to the checkpoint of the meta-pretrained model
    --save_dir              The path to save output files and checkpoint; default: ../results
    
  • 2.2.3/ Testing the fine-tuned model to collect LeToR features through test.sh in the run_shells folder:

    bash test.sh
    

    Optional arguments for testing:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --target_dir            The path to the target evaluation dataset
    --checkpoint_folder     The path to the checkpoint of the fine-tuned model
    --save_dir              The path to save output files and the **features** file; default: ../results
    
  • 2.2.4/ Ensemble. Train and test five models for each fold of the target dataset (5-fold cross-validation), and then ensemble and convert their output features to coor-ascent format using combine_features.sh in the ensemble folder:

    bash combine_features.sh
    

    Optional arguments for ensemble:

    --qrel_path             The path to the qrels of the target dataset
    --result_fold_1         The path to the testing result folder of the first fold model
    --result_fold_2         The path to the testing result folder of the second fold model
    --result_fold_3         The path to the testing result folder of the third fold model
    --result_fold_4         The path to the testing result folder of the fourth fold model
    --result_fold_5         The path to the testing result folder of the fifth fold model
    --save_dir              The path to save the ensembled `features.txt` file; default: ../combined_features
    
  • 2.2.5/ Coor-Ascent. Run coordinate ascent using run_ranklib.sh in the ensemble folder:

    bash run_ranklib.sh
    

    Optional arguments for coor-ascent:

    --qrel_path             The path to the qrels of the target dataset
    --ranklib_path          The path to the ensembled features.
    

    The final evaluation results will be output in the ranklib_path.

Results

All TREC files listed in this paper can be found in Tsinghua Cloud.

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022