The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Overview

Prior-Enhanced network with Meta-Prototypes (PEMP)

This is the PyTorch implementation of PEMP.

  • Overview of PEMP

Framework

  • Meta-Prototypes & Adaptive Prototypes

meta-prototypes

1. Preliminaries

  • Ubuntu 18.04 (tested)
  • Geforce GTX 2080Ti or Tesla V100 (tested)

1.1 Setup Python Enveriment

# Install Python and packages
conda create -n torch python=3.7
source activate torch
conda install numpy=1.19.1
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 -c pytorch 
conda install tqdm scipy pymongo opencv
pip install sacred==0.8.2 dropblock==0.3.0 pycocotools

1.2 Manage Experiments

We utilize Sacred for managing experiments (both training and testing).

If the users only want to perform the inference on PEMP, feel free to skip this subsection and continue on preparing datasets.

If the users want to re-train PEMP, please refer to this for setting up the database and visualization tools.

1.3 Prepare Data & Pre-trained Models

Please refer to this for preparing the data and pre-trained models.

1.4 Project Structure

  • ./core/ contains the trainer, evaluator, losses, metrics and solver.
  • ./data/ contains the datasets and pre-trained weights of VGG and ResNet.
  • ./data_kits/ contains the data loaders.
  • ./entry/ contains the entry points of the supported models.
  • ./networks/ contains the network implementation of the supported models.
  • ./scripts/ contains the running scripts of the supported models.
  • ./http/ contains the backend and the frontend of the visualization tools.
  • ./utils/ contains a timer, a logger, and some helper functions.
  • ./config.py contains global configuration and device configuration.

1.5 Supports (References)

Supports Source Link
Datasets PASCAL-5i http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
COCO-20i https://cocodataset.org/
Models Baseline (ours)
PEMP (ours)
PANet https://github.com/kaixin96/PANet
CaNet (only 1-shot) https://github.com/icoz69/CaNet
RPMMs (only 1-shot) https://github.com/Yang-Bob/PMMs
PFENet https://github.com/Jia-Research-Lab/PFENet

2. Training and Testing

2.1 Reproducibility

For reproducing the results, please make sure:

  1. Install the exact versions of packages(python, numpy, pytorch, torchvision and cudatoolkit).

  2. Use the random seed 1234 for the packages(random, numpy and pytorch), which is the default setting in the released code.

  3. Finish the unittest of the data loaders and get OK to assert the random seed works:

    PYTHONPATH=./ python -m unittest data_kits.pascal_voc_test
    PYTHONPATH=./ python -m unittest data_kits.coco_test

2.2 Usage

  • Start the MongoDB and Omniboard first.

  • Basic usage

CUDA_VISIBLE_DEVICES="0" PYTHONPATH=./ python entry/<MODEL>.py <COMMAND> with <UPDATE>
  • Parameter explanation
# <MODEL>:
#     We support several models: baseline, pemp_stage1, pemp_stage2, panet, canet, pfenet
#
# <COMMAND>:
#     We define three commands: train, test, visualize
#     Sacred provide several commands: print_config, print_dependencies
#
# <UPDATE>:
#    The user can update parameters. Please run following command for help.
#        PYTHONPATH=./ python entry/pemp_stage1.py help train
#	     PYTHONPATH=./ python entry/pemp_stage1.py help test
#        PYTHONPATH=./ python entry/pemp_stage1.py help visualize

# Get help for all the parameters
PYTHONPATH=./ python entry/pemp_stage1.py print_config
  • For simplicity, we provide some scripts for running experiments
# Template:
# bash ./scripts/pemp_stage1.sh train 0 [split=0] [shot=1] [data.dataset=PASCAL] [-u] [-p]
# bash ./scripts/pemp_stage1.sh test 0 [split=0] [shot=1] [data.dataset=PASCAL] [exp_id=1] [-u] [-p]
# bash ./scripts/pemp_stage2.sh test 0 [split=0] [shot=1] [data.dataset=PASCAL] [s1.id=1] [exp_id=5] [-u] [-p]

# Step1: Training/Testing PEMP_Stage1
bash ./scripts/pemp_stage1.sh train 0 split=0
bash ./scripts/pemp_stage1.sh test 0 split=0 exp_id=<S1_ID>

# Step2: Training/Testing PEMP_Stage2
bash ./scripts/pemp_stage2.sh train 0 split=0 s1.id=<S1_ID>
bash ./scripts/pemp_stage1.sh test 0 split=0 s1.id=<S1_ID> exp_id=<S2_ID>

3. Results (ResNet-50)

  • PASCAL-5i
Methods shots split-0 split-1 split-2 split-3 mIoU bIoU
Baseline 1 45.48 59.97 51.35 43.31 50.03 67.58
RPMMS 53.86 66.45 52.76 51.31 56.10 70.32
PEMP 55.74 65.88 54.12 50.34 56.52 71.41
Baseline 5 52.47 66.31 59.85 51.02 57.41 71.90
RPMMS 56.28 67.34 54.52 51.00 57.30 -
PEMP 58.59 69.10 60.31 53.01 60.25 73.84
  • COCO-20i
Methods shots split-0 split-1 split-2 split-3 mIoU bIoU
RPMMS 1 29.53 36.82 28.94 27.02 30.58 -
PEMP 29.28 34.09 29.64 30.36 30.84 63.13
RPMMS 5 33.82 41.96 32.99 33.33 35.52 -
PEMP 39.08 44.59 39.54 41.42 41.16 70.71

4. Visualization

We provide a simple tool for visualizing the segmentation prediction and response maps (see the paper).

Visualization tool

4.1 Evaluate and Save Predictions

# With pre-trained model
bash ./scripts/pemp_stage2.sh visualize 0 s1.id=1001 exp_id=1005

# A test run contains 1000 episodes. For fewer episodes, set the `data.test_n`
bash ./scripts/pemp_stage2.sh visualize 0 s1.id=1001 exp_id=1005 data.test_n=100

The prediction and response maps are saved in the directory ./http/static.

4.2 Start the Backend

# Instal flask 
conda install flask

# Start backend
cd http
python backend.py

# For 5-shot
python backend_5shot.py

4.3 Start the Frontend

Open the address https://localhost:17002 for browsing the results. ( https://localhost:17003 for 5-shot results)

Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022