Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Related tags

Deep LearningURN
Overview

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Introduction

This is a PyTorch implementation of Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation (AAAI2022), based on mmsegmentation. Please refer the classification phase to PMM and refer the segmentation phase to WSSS_MMSeg.

In this papper, we mitigate the noise of pseudo-mask in segmentation phase via uncertainty from response scaling which simulates the behavior of noise. This technique is applicable to all weakly-supervised semantic segmentation methods based on fully-supervised semantic segmentation.

Uncertainty visualization uncertainty visualization

Framework visualization framework visualization

Preparation

(Extract code of BaiduYun: mtci)

Datasets and pretrained weights

VOC12 OneDrive, BaiduYun; COCO14 BaiduYun; Pretrained weights OneDrive, BaiduYun

Pseduo-masks from classification phase

Pseudo-masks (if you want to skip cls phase), VOC12 OneDrive, COCO14 BaiduYun

Intermediate segmentation weights for uncertainty and cyclic pseudo-mask

Intermediate weights (if you want to skip first segmentation), BaiduYun

Released segmentation weights for test and visualization

Released weights, BaiduYun

Once downloaded, execute the following commands to link the datasets and weights.

git clone https://github.com/XMed-Lab/URN.git
cd URN
mkdir data
cd  data
ln -s [path to model files] models
ln -s [path to voc12] voc12
ln -s [path to coco2014] coco2014
ln -s [path to your voc pseudo-mask] voc12/VOC2012/ppmg
ln -s [path to your coco pseudo-mask] coco2014/voc_format/ppmg

Run the code

(If you don't run on server cluster based on srun, please modify the scripts "tools/dist_*.sh" refer to given scripts "tools/srun_*.sh")

Installation
cd URN
pip install mmcv==1.1.5
pip install -e .

(If you meet installation problems, please refer to mmsegmentation)

Train segmentation for the first time (you can skip it by intermediate weights)
cd URN
bash tools/slurm_train.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_pus.py work_dirs/voc12_r2n_pus 8
Uncertainty estimation and generate cyclic pseudo-mask
bash tools/slurm_test.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_uncertainty.py [intermediate weights] 8
Train segmentation with reweight strategy
bash tools/slurm_train.sh [cluster partition] python configs/pspnet_wsss/pspnet_res2net_20k_voc12aug_urn.py work_dirs/voc12_r2n_urn 8
Notes:
  1. We provide other backbones, including ResNet101, ScaleNet101, Wide-ResNet38
  2. Configs of COCO14 are provided in "configs/pspnet_wsss"
  3. It's suggested to use multiple cluster nodes to accelerate the genetation of pseudo-mask when use "tools/slurm_test.sh"
  4. Run "tools/run_pmm.sh" to get baselines of PMM

License

Please refer to: LICENSE.

Owner
XMed-Lab
Medical AI and Computer Vision Group, HKUST
XMed-Lab
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023