Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

Overview

🤗 Transformers Wav2Vec2 + PyCTCDecode

Introduction

This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDecode & KenLM ngram as a simple way to boost word error rate (WER).

Included is a file to create an ngram with KenLM as well as a simple evaluation script to compare the results of using Wav2Vec2 with PyCTCDecode + KenLM vs. without using any language model.

Note: The scripts are written to be used on GPU. If you want to use a CPU instead, simply remove all .to("cuda") occurances in eval.py.

Installation

In a first step, one should install KenLM. For Ubuntu, it should be enough to follow the installation steps described here. The installed kenlm folder should be move into this repo for ./create_ngram.py to function correctly. Alternatively, one can also link the lmplz binary file to a lmplz bash command to directly run lmplz instead of ./kenlm/build/bin/lmplz.

Next, some Python dependencies should be installed. Assuming PyTorch is installed, it should be sufficient to run pip install -r requirements.txt.

Run evaluation

Create ngram

In a first step on should create a ngram. E.g. for polish the command would be:

./create_ngram.py --language polish --path_to_ngram polish.arpa

After the language model is created, one should open the file. one should add a </s> The file should have a structure which looks more or less as follows:

\data\        
ngram 1=86586
ngram 2=546387
ngram 3=796581           
ngram 4=843999             
ngram 5=850874              
                                                  
\1-grams:
-5.7532206      <unk>   0
0       <s>     -0.06677356                                                                            
-3.4645514      drugi   -0.2088903
...

Now it is very important also add a </s> token to the n-gram so that it can be correctly loaded. You can simple copy the line:

0 <s> -0.06677356

and change <s> to </s>. When doing this you should also inclease ngram by 1. The new ngram should look as follows:

\data\
ngram 1=86587
ngram 2=546387
ngram 3=796581
ngram 4=843999
ngram 5=850874

\1-grams:
-5.7532206      <unk>   0
0       <s>     -0.06677356
0       </s>     -0.06677356
-3.4645514      drugi   -0.2088903
...

Now the ngram can be correctly used with pyctcdecode

Run eval

Having created the ngram, one can run:

./eval.py --language polish --path_to_ngram polish.arpa

To compare Wav2Vec2 + LM vs. Wav2Vec2 + No LM on polish.

Results

Without tuning any hyperparameters, the following results were obtained:

Comparison of Wav2Vec2 without Language model vs. Wav2Vec2 with `pyctcdecode` + KenLM 5gram.
Fine-tuned Wav2Vec2 models were used and evaluated on MLS datasets.
Take a closer look at `./eval.py` for comparison

==================================================portuguese==================================================
polish - No LM - | WER: 0.3069742867206763 | CER: 0.06054530156286364 | Time: 58.04590034484863
polish - With LM - | WER: 0.2291299753434308 | CER: 0.06211174564528545 | Time: 191.65409898757935

==================================================spanish==================================================
portuguese - No LM - | WER: 0.18208286674132138 | CER: 0.05016682956422096 | Time: 114.61633825302124
portuguese - With LM - | WER: 0.1487761958086706 | CER: 0.04489231909945738 | Time: 429.78511357307434

==================================================polish==================================================
spanish - No LM - | WER: 0.2581272104769545 | CER: 0.0703088156033147 | Time: 147.8634352684021
spanish - With LM - | WER: 0.14927852292116295 | CER: 0.052034208044195916 | Time: 563.0732748508453

It can be seen that the word error rate (WER) is significantly improved when using PyCTCDecode + KenLM. However, the character error rate (CER) does not improve as much or not at all. This is expected since using a language model will make sure that words that are predicted are words that exist in the language's vocabulary. Wav2Vec2 without a LM produces many words that are more or less correct but contain a couple of spelling errors, thus not contributing to a good WER. Those words are likely to be "corrected" by Wav2Vec2 + LM leading to an improved WER. However a Wav2Vec2 already has a good character error rate as its vocabulary is composed of characters meaning that a "word-based" language model doesn't really help in this case.

Overall WER is probably the more important metric though, so it might make a lot of sense to add a LM to Wav2Vec2.

In terms of speed, adding a LM significantly reduces speed. However, the script is not at all optimized for speed so using multi-processing and batched inference would significantly speed up both Wav2Vec2 without LM and with LM.

Owner
Patrick von Platen
Patrick von Platen
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022