[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Related tags

Deep LearningattMPTI
Overview

Few-shot 3D Point Cloud Semantic Segmentation

Created by Na Zhao from National University of Singapore

teaser

Introduction

This repository contains the PyTorch implementation for our CVPR 2021 Paper "Few-shot 3D Point Cloud Semantic Segmentation" by Na Zhao, Tat-Seng Chua, Gim Hee Lee.

Many existing approaches for point cloud semantic segmentation are fully supervised. These fully supervised approaches heavily rely on a large amount of labeled training data that is difficult to obtain and can not generalize to unseen classes after training. To mitigate these limitations, we propose a novel attention-aware multi-prototype transductive few-shot point cloud semantic segmentation method to segment new classes given a few labeled examples. Specifically, each class is represented by multiple prototypes to model the complex data distribution of 3D point clouds. Subsequently, we employ a transductive label propagation method to exploit the affinities between labeled multi-prototypes and unlabeled query points, and among the unlabeled query points. Furthermore, we design an attention-aware multi-level feature learning network to learn the discriminative features that capture the semantic correlations and geometric dependencies between points. Our proposed method shows significant and consistent improvements compared to the baselines in different few-shot point cloud segmentation settings (i.e. 2/3-way 1/5-shot) on two benchmark datasets.

Installation

  • Install python --This repo is tested with python 3.6.8.
  • Install pytorch with CUDA -- This repo is tested with torch 1.4.0, CUDA 10.1. It may work with newer versions, but that is not gauranteed.
  • Install faiss with cpu version
  • Install 'torch-cluster' with the corrreponding torch and cuda version
     pip install torch-cluster==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
    
  • Install dependencies
    pip install tensorboard h5py transforms3d
    

Usage

Data preparation

S3DIS

  1. Download S3DIS Dataset Version 1.2.

  2. Re-organize raw data into npy files by running

    cd ./preprocess
    python collect_s3dis_data.py --data_path $path_to_S3DIS_raw_data
    

    The generated numpy files are stored in ./datasets/S3DIS/scenes/ by default.

  3. To split rooms into blocks, run

    python ./preprocess/room2blocks.py --data_path ./datasets/S3DIS/scenes/

    One folder named blocks_bs1_s1 will be generated under ./datasets/S3DIS/ by default.

ScanNet

  1. Download ScanNet V2.

  2. Re-organize raw data into npy files by running

    cd ./preprocess
    python collect_scannet_data.py --data_path $path_to_ScanNet_raw_data
    

    The generated numpy files are stored in ./datasets/ScanNet/scenes/ by default.

  3. To split rooms into blocks, run

    python ./preprocess/room2blocks.py --data_path ./datasets/ScanNet/scenes/ --dataset scannet

    One folder named blocks_bs1_s1 will be generated under ./datasets/ScanNet/ by default.

Running

Training

First, pretrain the segmentor which includes feature extractor module on the available training set:

cd scripts
bash pretrain_segmentor.sh

Second, train our method:

bash train_attMPTI.sh

Evaluation

bash eval_attMPTI.sh

Note that the above scripts are used for 2-way 1-shot on S3DIS (S^0). You can modified the corresponding hyperparameters to conduct experiments on other settings.

Citation

Please cite our paper if it is helpful to your research:

@inproceedings{zhao2021few,
  title={Few-shot 3D Point Cloud Semantic Segmentation},
  author={Zhao, Na and Chua, Tat-Seng and Lee, Gim Hee},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Acknowledgement

We thank DGCNN (pytorch) for sharing their source code.

Owner
Ph.D. candidate in CS
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021