This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

Overview

On Quantitative Evaluations of Counterfactuals

Install

To install required packages with conda, run the following command:

> conda env create -f requirements.yml

Code

The code contains all the evaluation metrics used in the paper as well as the models and the data.

To evaluate methods, you need to choose a config from the configs directory and to choose which metric to apply. The code will then evaluate the chosen metrics on counterfactuals from all three methods (GB, GL, GEN) and store the results in an appropriate subdirectory in outputs. If you, e.g., want to run all metrics on the MNIST dataset, use the following command:

(cfeval) > python main.py --eval -c configs/mnist/mnist.ini -a

Afterwards you can enumerate the directory by

(cfeval) > python main.py --list

to get an output like the following:

> Listing dirs
000: ./output/celeba_makeup_[0]
001: ./output/fake_mnist_[0]
002: ./output/mnist_0_1_[0]
003: ./output/mnist_[0]

Now, results can be printed for the MNIST dataset (idx 3 above) by

(cfeval) > python main.py --print -c 3 

To get a result like

# # # # # # # # # # # # # # # # # # # # 
# MNIST
# # # # # # # # # # # # # # # # # # # # 
Method \ Metric    TargetClassValidity    ElasticNet    IM1          IM2             FID  Oracle
-----------------  ---------------------  ------------  -----------  -----------  ------  ------------
GB                 99.59 (0.13)           16.07 (0.18)  0.99 (0.00)  0.55 (0.01)   50.23  73.38 (0.87)
GL                 100.00 (0.00)          42.76 (0.31)  0.99 (0.00)  0.53 (0.00)  308.43  37.71 (0.95)
GEN                99.97 (0.03)           99.17 (0.58)  0.88 (0.00)  0.17 (0.00)   90.73  93.13 (0.50)

Directory overview:

File Description
ckpts Contains all the (Keras) models used by the various metrics.
data Contains the data used, both counterfactual examples from GB, GL, and GEN, and original input data.
configs Contains config files specifying experimental details like dataset, normalization, etc.
data Contains the data in numpy arrays.
dataset Code for loading data.
evaluate Implementations of all the metrics.
output Directory to hold computed results. Directory already contains results from paper.
config.py Reads config files from configs
constants.py Method and metric names.
listing.py Utility for indexing output dirs (see description below)
main.py Main file to run all code through.
print_results.py Utillity function for printing results from json files in the output directory.
Owner
Frederik Hvilshøj
PhD Student. Finishing PhD in Machine Learning Fall 2021.
Frederik Hvilshøj
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Model-based Reinforcement Learning Improves Autonomous Racing Performance

Racing Dreamer: Model-based versus Model-free Deep Reinforcement Learning for Autonomous Racing Cars In this work, we propose to learn a racing contro

Cyber Physical Systems - TU Wien 38 Dec 06, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022