Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Overview

Dual-task Pose Transformer Network

The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

framework

Get Start

1) Requirement

  • Python 3.7.9
  • Pytorch 1.7.1
  • torchvision 0.8.2
  • CUDA 11.1
  • NVIDIA A100 40GB PCIe

2) Data Preperation

Following PATN, the dataset split files and extracted keypoints files can be obtained as follows:

DeepFashion

  • Download the DeepFashion dataset in-shop clothes retrival benchmark, and put them under the ./dataset/fashion directory.

  • Download train/test pairs and train/test keypoints annotations from Google Drive, including fasion-resize-pairs-train.csv, fasion-resize-pairs-test.csv, fasion-resize-annotation-train.csv, fasion-resize-annotation-train.csv, train.lst, test.lst, and put them under the ./dataset/fashion directory.

  • Split the raw image into the training set (./dataset/fashion/train) and test set (./dataset/fashion/test):

python data/generate_fashion_datasets.py

Market1501

  • Download the Market1501 dataset from here. Rename bounding_box_train and bounding_box_test as train and test, and put them under the ./dataset/market directory.

  • Download train/test key points annotations from Google Drive including market-pairs-train.csv, market-pairs-test.csv, market-annotation-train.csv, market-annotation-train.csv. Put these files under the ./dataset/market directory.

3) Train a model

DeepFashion

python train.py --name=DPTN_fashion --model=DPTN --dataset_mode=fashion --dataroot=./dataset/fashion --batchSize 32 --gpu_id=0

Market1501

python train.py --name=DPTN_market --model=DPTN --dataset_mode=market --dataroot=./dataset/market --dis_layer=3 --lambda_g=5 --lambda_rec 2 --t_s_ratio=0.8 --save_latest_freq=10400 --batchSize 32 --gpu_id=0

4) Test the model

You can directly download our test results from Google Drive: Deepfashion, Market1501.

DeepFashion

python test.py --name=DPTN_fashion --model=DPTN --dataset_mode=fashion --dataroot=./dataset/fashion --which_epoch latest --results_dir ./results/DPTN_fashion --batchSize 1 --gpu_id=0

Market1501

python test.py --name=DPTN_market --model=DPTN --dataset_mode=market --dataroot=./dataset/market --which_epoch latest --results_dir=./results/DPTN_market  --batchSize 1 --gpu_id=0

5) Evaluation

We adopt SSIM, PSNR, FID and LPIPS for the evaluation.

DeepFashion

python -m  metrics.metrics --gt_path=./dataset/fashion/test --distorated_path=./results/DPTN_fashion --fid_real_path=./dataset/fashion/train --name=./fashion

Market1501

python -m  metrics.metrics --gt_path=./dataset/market/test --distorated_path=./results/DPTN_market --fid_real_path=./dataset/market/train --name=./market --market

6) Pre-trained Model

Our pre-trained model can be downloaded from Google Drive: Deepfashion, Market1501.

Citation


Acknowledgement

We build our project based on pix2pix. Some dataset preprocessing methods are derived from PATN.

Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023