Binary classification for arrythmia detection with ECG datasets.

Overview

HEART DISEASE AI DATATHON 2021

[Eng] / [Kor]


#English

This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electrocardiogram datasets for artificial intelligence learning promoted as part of the "2021 AI Learning Data Construction Project" to discriminate echocardiography/electrocardiogram diseases.

Task II. Arrythmia on ECG datasets

0. Model

Resnet-based architecture.
Best AUC-ROC Score: 0.9986926250732517

1. Installation

1.1. Environment

Python >= 3.6

1.2. Requirements:

  • tensorflow >= 2.5
  • xmltodict
  • scikit-learn
  • matplotlib
  • numpy
pip install -r requirements.txt

2. Usage

2.1. Training

  1. Basic usage
python train.py -d electrocardiogram/data/train -s model.h5
  1. Training with 8 leads inputs, elevation adjustment, data augmentation and gqussian noises
python train.py -d electrocardiogram/data/train -s model.h5 -l 8 -v -a -n

To see more options:

python train.py -h
  • options:
    • -d, --data : File path of training data
    • -s, --save : File name for saving trained model (extension should be '.h5')
    • -b, --batch : Batch size (default=500)
    • -e, --epoch : Number of epochs (default=50)
    • -l, --lead : Number of leads to be trained (2/8/12) (default=2)
    • -v, --elevation : Option for adjusting elevation
    • -a, --augmentation : Option for data augmentation (stretching & amplifying)
    • -n, --noise : Option for adding noise on data

2.2. Evaluation

  1. Basic usage
python eval.py -d electrocardiogram/data/validation -m model.h5
  1. Evaluation with the best model
python eval.py -d electrocardiogram/data/validation -m best.h5
  1. Evaluation with 12 leads inputs and elevation adjustment
python eval.py -d electrocardiogram/data/validation -m model.h5 -l 12 -v

To see more options:

python eval.py -h
  • options:
    • -d, --data : File path of validation data
    • -m, --model : File name of saved model
    • -l, --lead : Number of leads being trained (default=2) (2/8/12)
    • -v, --elevation : Option for adjusting elevation

#Korean

심초음파/심전도 ai 모델 데이터톤 2021

이 경진대회는 "2021 인공지능 학습용 데이터 구축사업"의 일환으로 추진된 인공지능 학습용 심장질환 심초음파 및 심전도 데이터셋을 이용하여 심초음파/심전도 질환을 판별하는 AI 진단 모델링 경진대회입니다.

Task II. Arrythmia on ECG datasets

심전도 데이터셋을 활용한 부정맥 진단 AI 모델 공모(심전도 데이터셋을 활용한 부정맥 진단 AI 모델 개발)

0. 모델

Resnet 구조 기반의 Binary classification model.
Best AUC-ROC Score: 0.9986926250732517

1. 설치

1.1. 환경

Python >= 3.6

1.2. 필요한 패키지:

  • tensorflow >= 2.5
  • xmltodict
  • scikit-learn
  • matplotlib
  • numpy
pip install -r requirements.txt

2. 사용법

2.1. Training

  1. 기본 사용법 예시 (제출용)
python train.py -d electrocardiogram/data/train -s model.h5
  1. 8개 리드, 상하조정, 데이터 어그멘테이션, 노이즈 적용
python train.py -d electrocardiogram/data/train -s model.h5 -l 8 -v -a -n

To see more options:

python train.py -h
  • options:
    • -d, --data : 트레이닝 데이터 경로
    • -s, --save : 학습된 모델명 (확장자 .h5로 써줄 것)
    • -b, --batch : 배치 사이즈 (default=500)
    • -e, --epoch : 에포크 수 (default=50)
    • -l, --lead : 트레이닝에 쓸 리드 수 (2/8/12) (default=2)
    • -v, --elevation : 상하 조정 옵션
    • -a, --augmentation : 데이터 어그멘테이션 옵션 (stretching & amplifying)
    • -n, --noise : 가우시안 노이즈 적용 옵션

2.2. Evaluation

  1. 기본 사용법 예시
python eval.py -d electrocardiogram/data/validation -m model.h5
  1. 체출된 Best model 평가 (제출용)
python eval.py -d electrocardiogram/data/validation -m best.h5
  1. 12개 리드, 상하조정 적용
python eval.py -d electrocardiogram/data/validation -m model.h5 -l 12 -v

To see more options:

python eval.py -h
  • options:
    • -d, --data : 벨리데이션 데이터 경로
    • -m, --model : 불러올 모델 파일명
    • -l, --lead : 트레이닝된 리드 수 (2/8/12) (default=2)
    • -v, --elevation : 상하 조정 옵션
Owner
HY_Kim
CSer in SUNY Korea.
HY_Kim
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022