Binary classification for arrythmia detection with ECG datasets.

Overview

HEART DISEASE AI DATATHON 2021

[Eng] / [Kor]


#English

This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electrocardiogram datasets for artificial intelligence learning promoted as part of the "2021 AI Learning Data Construction Project" to discriminate echocardiography/electrocardiogram diseases.

Task II. Arrythmia on ECG datasets

0. Model

Resnet-based architecture.
Best AUC-ROC Score: 0.9986926250732517

1. Installation

1.1. Environment

Python >= 3.6

1.2. Requirements:

  • tensorflow >= 2.5
  • xmltodict
  • scikit-learn
  • matplotlib
  • numpy
pip install -r requirements.txt

2. Usage

2.1. Training

  1. Basic usage
python train.py -d electrocardiogram/data/train -s model.h5
  1. Training with 8 leads inputs, elevation adjustment, data augmentation and gqussian noises
python train.py -d electrocardiogram/data/train -s model.h5 -l 8 -v -a -n

To see more options:

python train.py -h
  • options:
    • -d, --data : File path of training data
    • -s, --save : File name for saving trained model (extension should be '.h5')
    • -b, --batch : Batch size (default=500)
    • -e, --epoch : Number of epochs (default=50)
    • -l, --lead : Number of leads to be trained (2/8/12) (default=2)
    • -v, --elevation : Option for adjusting elevation
    • -a, --augmentation : Option for data augmentation (stretching & amplifying)
    • -n, --noise : Option for adding noise on data

2.2. Evaluation

  1. Basic usage
python eval.py -d electrocardiogram/data/validation -m model.h5
  1. Evaluation with the best model
python eval.py -d electrocardiogram/data/validation -m best.h5
  1. Evaluation with 12 leads inputs and elevation adjustment
python eval.py -d electrocardiogram/data/validation -m model.h5 -l 12 -v

To see more options:

python eval.py -h
  • options:
    • -d, --data : File path of validation data
    • -m, --model : File name of saved model
    • -l, --lead : Number of leads being trained (default=2) (2/8/12)
    • -v, --elevation : Option for adjusting elevation

#Korean

심초음파/심전도 ai 모델 데이터톤 2021

이 경진대회는 "2021 인공지능 학습용 데이터 구축사업"의 일환으로 추진된 인공지능 학습용 심장질환 심초음파 및 심전도 데이터셋을 이용하여 심초음파/심전도 질환을 판별하는 AI 진단 모델링 경진대회입니다.

Task II. Arrythmia on ECG datasets

심전도 데이터셋을 활용한 부정맥 진단 AI 모델 공모(심전도 데이터셋을 활용한 부정맥 진단 AI 모델 개발)

0. 모델

Resnet 구조 기반의 Binary classification model.
Best AUC-ROC Score: 0.9986926250732517

1. 설치

1.1. 환경

Python >= 3.6

1.2. 필요한 패키지:

  • tensorflow >= 2.5
  • xmltodict
  • scikit-learn
  • matplotlib
  • numpy
pip install -r requirements.txt

2. 사용법

2.1. Training

  1. 기본 사용법 예시 (제출용)
python train.py -d electrocardiogram/data/train -s model.h5
  1. 8개 리드, 상하조정, 데이터 어그멘테이션, 노이즈 적용
python train.py -d electrocardiogram/data/train -s model.h5 -l 8 -v -a -n

To see more options:

python train.py -h
  • options:
    • -d, --data : 트레이닝 데이터 경로
    • -s, --save : 학습된 모델명 (확장자 .h5로 써줄 것)
    • -b, --batch : 배치 사이즈 (default=500)
    • -e, --epoch : 에포크 수 (default=50)
    • -l, --lead : 트레이닝에 쓸 리드 수 (2/8/12) (default=2)
    • -v, --elevation : 상하 조정 옵션
    • -a, --augmentation : 데이터 어그멘테이션 옵션 (stretching & amplifying)
    • -n, --noise : 가우시안 노이즈 적용 옵션

2.2. Evaluation

  1. 기본 사용법 예시
python eval.py -d electrocardiogram/data/validation -m model.h5
  1. 체출된 Best model 평가 (제출용)
python eval.py -d electrocardiogram/data/validation -m best.h5
  1. 12개 리드, 상하조정 적용
python eval.py -d electrocardiogram/data/validation -m model.h5 -l 12 -v

To see more options:

python eval.py -h
  • options:
    • -d, --data : 벨리데이션 데이터 경로
    • -m, --model : 불러올 모델 파일명
    • -l, --lead : 트레이닝된 리드 수 (2/8/12) (default=2)
    • -v, --elevation : 상하 조정 옵션
Owner
HY_Kim
CSer in SUNY Korea.
HY_Kim
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023