[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

Overview

IVOS-W

Paper

Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanling Zhang, Shenghua Gao.

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[Preprint] [Supplementary Material] [Poster]

Getting Started

Create the environment

# create conda env
conda create -n ivosw python=3.7
# activate conda env
conda activate ivosw
# install pytorch
conda install pytorch=1.3 torchvision
# install other dependencies
pip install -r requirements.txt

We adopt MANet, IPN, and ATNet as the VOS algorithms. Please follow the instructions to install the dependencies.

git clone https://github.com/yuk6heo/IVOS-ATNet.git VOS/ATNet
git clone https://github.com/lightas/CVPR2020_MANet.git VOS/MANet
git clone https://github.com/zyy-cn/IPN.git VOS/IPN

Dataset Preparation

  • DAVIS 2017 Dataset
    • Download the data and human annotated scribbles here.
    • Place DAVIS folder into root/data.
  • YouTube-VOS Dataset
    • Download the YouTube-VOS 2018 version here.
    • Clean up the annotations following here.
    • Download our annotated scribbles here.

Create a DAVIS-like structure of YouTube-VOS by running the following commands:

python datasets/prepare_ytbvos.py --src path/to/youtube_vos --scb path/to/scribble_dir

Evaluation

For evaluation, please download the pretrained agent model and quality assessment model, then place them into root/weights and run the following commands:

python eval_agent_{atnet/manet/ipn}.py with setting={oracle/wild} dataset={davis/ytbvos} method={random/linspace/worst/ours}

The results will be stored in results/{VOS}/{setting}/{dataset}/{method}/summary.json

Note: The results may fluctuate slightly with different versions of networkx, which is used by davisinteractive to generate simulated scribbles.

Training

First, prepare the data used to train the agent by downloading reward records and pretrained experience buffer, place them into root/train, or generate them from scratch:

python produce_reward.py
python pretrain_agent.py

To train the agent:

python train_agent.py

To train the segmentation quality assessment model:

python generate_data.py
python quality_assessment.py

Citation

@inproceedings{IVOSW,
  title     = {Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild},
  author    = {Zhaoyuan Yin and
               Jia Zheng and
               Weixin Luo and
               Shenhan Qian and
               Hanling Zhang and
               Shenghua Gao},
  booktitle = {CVPR},
  year      = {2021}
}

LICENSE

The code is released under the MIT license.

Owner
SVIP Lab
ShanghaiTech Vision and Intelligent Perception Lab
SVIP Lab
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022