Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

Overview

About

This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the same parameters as used in the paper.

We use torch 1.7.1 and torchvision 0.6.0. While the training and inference should be able to be done correctly with the newer versions of the libraries, be aware that at times the network trained and tested using versions might diverge or reach lower results. We provide a evironment.yaml file to create a corresponding conda environment.

We also support mixed-precision training via Nvidia Apex and describe how to use it in usage.

As in the paper we support training on 4 datasets: CUB-200-2011, CARS 196, Stanford Online Products and In-Shop datasets.

The majority of experiments are done using ResNet50. We provide support for the entire family of ResNet and DenseNet as well as BN-Inception.

Set up

  1. Clone and enter this repository:

     git clone https://github.com/dvl-tum/intra_batch.git
    
     cd intra_batch
    
  2. Create an Anaconda environment for this project: To set up a conda environment containing all used packages, please fist install anaconda and then run

    1.   conda env create -f environment.yml
      
    2.  conda activate intra_batch_dml
      
    3.  pip install torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.5.0+cu102.html
      
    4. If you want to use Apex, please follow the installation instructions on https://github.com/NVIDIA/apex
  3. Download datasets: Make a data directory by typing

     mkdir data
    

    Then download the datasets using the following links and unzip them in the data directory:

    We also provide a parser for Stanford Online Products and In-Shop datastes. You can find dem in the dataset/ directory. The datasets are expected to be structured as dataset/images/class/, where dataset is either CUB-200-2011, CARS, Stanford_Online_Products or In_shop and class are the classes of a given dataset. Example for CUB-200-2011:

         CUB_200_2011/images/001
         CUB_200_2011/images/002
         CUB_200_2011/images/003
         ...
         CUB_200_2011/images/200
    
  4. Download our models: Please download the pretrained weights by using

     wget https://vision.in.tum.de/webshare/u/seidensc/intra_batch_connections/best_weights.zip
    

    and unzip them.

Usage

You can find config files for training and testing on each of the datasets in the config/ directory. For training and testing, you will have to input which one you want to use (see below). You will only be able to adapt some basic variables over the command line. For all others please refer to the yaml file directly.

Testing

To test to networks choose one of the config files for testing, e.g., config_cars_test.yaml to evaluate the performance on Cars196 and run:

python train.py --config_path config_cars_test.yaml --dataset_path <path to dataset> 

The default dataset path is data.

Training

To train a network choose one of the config files for training like config_cars_train.yaml to train on Cars196 and run:

python train.py --config_path config_cars_train.yaml --dataset_path <path to dataset> --net_type <net type you want to use>

Again, if you don't specify anything, the default setting will be used. For the net type you have the following options:

resnet18, resnet32, resnet50, resnet101, resnet152, densenet121, densenet161, densenet16, densenet201, bn_inception

If you want to use apex add --is_apex 1 to the command.

Results

[email protected] [email protected] [email protected] [email protected] NMI
CUB-200-2011 70.3 80.3 87.6 92.7 73.2
Cars196 88.1 93.3 96.2 98.2 74.8
[email protected] [email protected] [email protected] NMI
Stanford Online Products 81.4 91.3 95.9 92.6
[email protected] [email protected] [email protected] [email protected]
In-Shop 92.8 98.5 99.1 99.2

Citation

If you find this code useful, please consider citing the following paper:

@inproceedings{DBLP:conf/icml/SeidenschwarzEL21,
  author    = {Jenny Seidenschwarz and
               Ismail Elezi and
               Laura Leal{-}Taix{\'{e}}},
  title     = {Learning Intra-Batch Connections for Deep Metric Learning},
  booktitle = {Proceedings of the 38th International Conference on Machine Learning,
               {ICML} 2021, 18-24 July 2021, Virtual Event},
  series    = {Proceedings of Machine Learning Research},
  volume    = {139},
  pages     = {9410--9421},
  publisher = {{PMLR}},
  year      = {2021},
}
Owner
Dynamic Vision and Learning Group
Dynamic Vision and Learning Group
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
An Implementation of Fully Convolutional Networks in Tensorflow.

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

Marvin Teichmann 1.1k Dec 12, 2022
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022