HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

Overview

HomoInterpGAN

Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral)

Installation

The implementation is based on pytorch. Our model is trained and tested on version 1.0.1.post2. Please install relevant packages based on your own environment.

All other required packages are listed in "requirements.txt". Please run

pip install -r requirements.txt

to install these packages.

Dataset

Download the "Align&Cropped Images" of the CelebA dataset. If the original link is unavailable, you can also download it here.

Training

Firstly, cd to the project directory and run

export PYTHONPATH=./:$PYTHONPATH

before executing any script.

To train a model on CelebA, please run

python run.py train --data_dir CELEBA_ALIGNED_DIR -sp checkpoints/CelebA -bs 128 -gpu 0,1,2,3 

Key arguments

--data_dir: The path of the celeba_aligned images. 
-sp: The trained model and logs, intermediate results are stored in this directory.
-bs: Batch size.
-gpu: The GPU index.
--attr: This specifies the target attributes. Note that we concatenate multiple attributes defined in CelebA as our grouped attribute. We use "@" to group multiple multiple attributes to a grouped one (e.g., [email protected] forms a "expression" attriute). We use "," to split different grouped attributes. See the default argument of "run.py" for details. 

Testing

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8

This conducts attribute manipulation with reference samples selected in CelebA dataset. The reference samples are selected based on their attributes (--filter_target_attr), and the interpolation path should be chosen accordingly.

Key arguments:

1, the effect is exaggerated. -bs: the batch size of the testing images. -n_ref: the number of images used as reference. ">
-mp: the model path. The checkpoints of encoder, interpolator and decoder should be stored in this path.
-sp: the save path of the results.
--filter_target_attr: This specifies the attributes of the reference images. The attribute names can be found in "info/attribute_names.txt". We can specify one attribute (e.g., "Smiling") or several attributes (e.g., "[email protected]_Slightly_Open" will filter mouth open smiling reference images). To filter negative samples, add "NOT" as prefix to the attribute names, such as "NOTSmiling", "[email protected]_Slightly_Open".
--branch_idx: This specifies the branch index of the interpolator. Each branch handles a group of attribute. Note that the physical meaning of each branch is specified by "--attr" during testing. 
-s: The strength of the manipulation. Range of [0, 2] is suggested. If s>1, the effect is exaggerated.
-bs: the batch size of the testing images. 
-n_ref: the number of images used as reference. 

Testing on unaligned images

Note the the performance could degenerate if the testing image is not well aligned. Thus we also provide a tool for face alignment. Please place all your testing images to a folder (e.g., examples/original), then run

python facealign/align_all.py examples/original examples/aligned

to align testing images to an samples in CelebA. Then you can run manipulation by

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8 --test_folder examples/aligned

Note that an additional argument "--test_folder" is specified.

Pretrained model

We have also provided a pretrained model here. It is trained with default parameters. The meaning of each branch of the interpolator is listed bellow.

Branch index Grouped attribute Corresponding labels on CelebA
1 Expression Mouth_Slightly_Open, Smiling
2 Gender trait Male, No_Beard, Mustache, Goatee, Sideburns
3 Hair color Black_Hair, Blond_Hair, Brown_Hair, Gray_Hair
4 Hair style Bald, Receding_Hairline, Bangs
5 Age Young

Updates

  • Jun 17, 2019: It is observed that the face alignment tool is not perfect, and the results of "Testing on unaligned images" does not perform as well as results in CelebA dataset. To make the model less sensitive of the alignment issue, we add random shifting in center_crop during training. The shifting range can be controlled by "--random_crop_bias". We have updated the pretarined model by fine-tuning it with "random_crop_bias=10", which leads to better results in unaligned images.

Reference

Ying-Cong Chen, Xiaogang Xu, Zhuotao Tian, Jiaya Jia, "Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation" , Computer Vision and Pattern Recognition (CVPR), 2019 PDF

@inproceedings{chen2019Homomorphic,
  title={Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation},
  author={Chen, Ying-Cong and Xu, Xiaogang and Tian, Zhuotao and Jia, Jiaya},
  booktitle={CVPR},
  year={2019}
}

Contect

Please contact [email protected] if you have any question or suggestion.

Owner
Ying-Cong Chen
Ying-Cong Chen
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022