An Implementation of Fully Convolutional Networks in Tensorflow.

Overview

Update

An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository.

tensorflow-fcn

This is a one file Tensorflow implementation of Fully Convolutional Networks in Tensorflow. The code can easily be integrated in your semantic segmentation pipeline. The network can be applied directly or finetuned to perform semantic segmentation using tensorflow training code.

Deconvolution Layers are initialized as bilinear upsampling. Conv and FCN layer weights using VGG weights. Numpy load is used to read VGG weights. No Caffe or Caffe-Tensorflow is required to run this. The .npy file for [VGG16] to be downloaded before using this needwork. You can find the file here: ftp://mi.eng.cam.ac.uk/pub/mttt2/models/vgg16.npy

No Pascal VOC finetuning was applied to the weights. The model is meant to be finetuned on your own data. The model can be applied to an image directly (see test_fcn32_vgg.py) but the result will be rather coarse.

Requirements

In addition to tensorflow the following packages are required:

numpy scipy pillow matplotlib

Those packages can be installed by running pip install -r requirements.txt or pip install numpy scipy pillow matplotlib.

Tensorflow 1.0rc

This code requires Tensorflow Version >= 1.0rc to run. If you want to use older Version you can try using commit bf9400c6303826e1c25bf09a3b032e51cef57e3b. This Commit has been tested using the pip version of 0.12, 0.11 and 0.10.

Tensorflow 1.0 comes with a large number of breaking api changes. If you are currently running an older tensorflow version, I would suggest creating a new virtualenv and install 1.0rc using:

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0rc0-cp27-none-linux_x86_64.whl
pip install --upgrade $TF_BINARY_URL

Above commands will install the linux version with gpu support. For other versions follow the instructions here.

Usage

python test_fcn32_vgg.py to test the implementation.

Use this to build the VGG object for finetuning:

vgg = vgg16.Vgg16()
vgg.build(images, train=True, num_classes=num_classes, random_init_fc8=True)

The images is a tensor with shape [None, h, w, 3]. Where h and w can have arbitrary size.

Trick: the tensor can be a placeholder, a variable or even a constant.

Be aware, that num_classes influences the way score_fr (the original fc8 layer) is initialized. For finetuning I recommend using the option random_init_fc8=True.

Training

Example code for training can be found in the KittiSeg project repository.

Finetuning and training

For training build the graph using vgg.build(images, train=True, num_classes=num_classes) were images is q queue yielding image batches. Use a softmax_cross_entropy loss function on top of the output of vgg.up. An Implementation of the loss function can be found in loss.py.

To train the graph you need an input producer and a training script. Have a look at TensorVision to see how to build those.

I had success finetuning the network using Adam Optimizer with a learning rate of 1e-6.

Content

Currently the following Models are provided:

  • FCN32
  • FCN16
  • FCN8

Remark

The deconv layer of tensorflow allows to provide a shape. The crop layer of the original implementation is therefore not needed.

I have slightly altered the naming of the upscore layer.

Field of View

The receptive field (also known as or field of view) of the provided model is:

( ( ( ( ( 7 ) * 2 + 6 ) * 2 + 6 ) * 2 + 6 ) * 2 + 4 ) * 2 + 4 = 404

Predecessors

Weights were generated using Caffe to Tensorflow. The VGG implementation is based on tensorflow-vgg16 and numpy loading is based on tensorflow-vgg. You do not need any of the above cited code to run the model, not do you need caffe.

Install

Installing matplotlib from pip requires the following packages to be installed libpng-dev, libjpeg8-dev, libfreetype6-dev and pkg-config. On Debian, Linux Mint and Ubuntu Systems type:

sudo apt-get install libpng-dev libjpeg8-dev libfreetype6-dev pkg-config
pip install -r requirements.txt

TODO

  • Provide finetuned FCN weights.
  • Provide general training code
Owner
Marvin Teichmann
Germany Phd student. Working on Deep Learning and Computer Vision projects.
Marvin Teichmann
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022