Code and training data for our ECCV 2016 paper on Unsupervised Learning

Overview

Shuffle and Learn (Shuffle Tuple)

Created by Ishan Misra

Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order Verification" link to paper.

This codebase contains the model and training data from our paper.

Introduction

Our code base is a mix of Python and C++ and uses the Caffe framework. Design decisions and some code is derived from the Fast-RCNN codebase by Ross Girshick.

Citing

If you find our code useful in your research, please consider citing:

@inproceedings{misra2016unsupervised,
  title={{Shuffle and Learn: Unsupervised Learning using Temporal Order Verification}},
  author={Misra, Ishan and Zitnick, C. Lawrence and Hebert, Martial},
  booktitle={ECCV},
  year={2016}
}

Benchmark Results

We summarize the results of finetuning our method here (details in the paper).

Action Recognition

| Dataset | Accuracy (split 1) | Accuracy (mean over splits) :--- | :--- | :--- | :--- UCF101 | 50.9 | 50.2 HMDB51 | 19.8 | 18.1

Pascal Action Classification (VOC2012): Coming soon

Pose estimation

  • FLIC: PCK (Mean, AUC) 84.7, 49.6
  • MPII: [email protected] (Upper, Full, AUC): 87.7, 85.8, 47.6

Object Detection

  • PASCAL VOC2007 test mAP of 42.4% using Fast RCNN.

We initialize conv1-5 using our unsupervised pre-training. We initialize fc6-8 randomly. We then follow the procedure from Krahenbuhl et al., 2016 to rescale our network and finetune all layers using their hyperparameters.

Surface Normal Prediction

  • NYUv2 (Coming soon)

Contents

  1. Requirements: software
  2. Models and Training Data
  3. Usage
  4. Utils

Requirements: software

  1. Requirements for Caffe and pycaffe (see: Caffe installation instructions)

Note: Caffe must be built with support for Python layers and OpenCV.

# In your Makefile.config, make sure to have this line uncommented
WITH_PYTHON_LAYER := 1
USE_OPENCV := 1

You can download a compatible fork of Caffe from here. Note that since our model requires Batch Normalization, you will need to have a fairly recent fork of caffe.

Models and Training Data

  1. Our model trained on tuples from UCF101 (train split 1, without using action labels) can be downloaded here.

  2. The tuples used for training our model can be downloaded as a zipped text file here. Each line of the file train01_image_keys.txt defines a tuple of three frames. The corresponding file train01_image_labs.txt has a binary label indicating whether the tuple is in the correct or incorrect order.

  3. Using the training tuples requires you to have the raw videos from the UCF101 dataset (link to videos). We extract frames from the videos and resize them such that the max dimension is 340 pixels. You can use ffmpeg to extract the frames. Example command: ffmpeg -i <video_name> -qscale 1 -f image2 <video_sub_name>/<video_sub_name>_%06d.jpg, where video_sub_name is the name of the raw video without the file extension.

Usage

  1. Once you have downloaded and formatted the UCF101 videos, you can use the networks/tuple_train.prototxt file to train your network. The only complicated part in the network definition is the data layer, which reads a tuple and a label. The data layer source file is in the python_layers subdirectory. Make sure to add this to your PYTHONPATH.
  2. Training for Action Recognition: We used the codebase from here
  3. Training for Pose Estimation: We used the codebase from here. Since this code does not use caffe for training a network, I have included a experimental data layer for caffe in python_layers/pose_data_layer.py

Utils

This repo also includes a bunch of utilities I used for training and debugging my models

  • python_layers/loss_tracking_layer: This layer tracks loss of each individual data point and its class label. This is useful for debugging as one can see the loss per class across epochs. Thanks to Abhinav Shrivastava for discussions on this.
  • model_training_utils: This is the wrapper code used to train the network if one wants to use the loss_tracking layer. These utilities not only track the loss, but also keep a log of various other statistics of the network - weights of the layers, norms of the weights, magnitude of change etc. For an example of how to use this check networks/tuple_exp.py. Thanks to Carl Doersch for discussions on this.
  • python_layers/multiple_image_multiple_label_data_layer: This is a fairly generic data layer that can read multiple images and data. It is based off my data layers repo.
Owner
Ishan Misra
Ishan Misra
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023