automatic color-grading

Overview

color-matcher

Description

color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, paintings and film sequences as well as light-field and stopmotion corrections. The methods behind the mappings are based on the approach from Reinhard et al., an analytical solution to a Multi-Variate Gaussian Distribution (MVGD) transfer, the Monge-Kantorovich solution as proposed by Pitie et al. and classical histogram matching.

release License GitHub Workflow Status coverage PyPi Dl2 PyPI Downloads

binder

Results

  Source Target Result
Photograph
Film sequence
Light-field correction
Paintings

Installation

  • via pip:
    1. install with pip3 install color-matcher
    2. type color-matcher -h to the command line once installation finished
  • from source:
    1. install Python from https://www.python.org/
    2. download the source using git clone https://github.com/hahnec/color-matcher.git
    3. go to the root directory cd color-matcher
    4. load dependencies $ pip3 install -r requirements.txt
    5. install with python3 setup.py install
    6. if installation ran smoothly, enter color-matcher -h to the command line

CLI Usage

From the root directory of your downloaded repo, you can run the tool on the provided test data by

color-matcher -s './tests/data/scotland_house.png' -r './tests/data/scotland_plain.png'

on a UNIX system where the result is found at ./tests/data/. A windows equivalent of the above command is

color-matcher --src=".\\tests\\data\\scotland_house.png" --ref=".\\tests\\data\\scotland_plain.png"

Alternatively, you can specify the method or select your images manually with

color-matcher --win --method='hm-mkl-hm'

Note that batch processing is possible by passing a source directory, e.g., via

color-matcher -s './tests/data/' -r './tests/data/scotland_plain.png'

More information on optional arguments, can be found using the help parameter

color-matcher -h

API Usage

from color_matcher import ColorMatcher
from color_matcher.io_handler import load_img_file, save_img_file, FILE_EXTS
from color_matcher.normalizer import Normalizer
import os

img_ref = load_img_file('./tests/data/scotland_plain.png')

src_path = '.'
filenames = [os.path.join(src_path, f) for f in os.listdir(src_path)
                     if f.lower().endswith(FILE_EXTS)]

for i, fname in enumerate(filenames):
    img_src = load_img_file(fname)
    obj = ColorMatcher(src=img_src, ref=img_ref, method='mkl')
    img_res = obj.main()
    img_res = Normalizer(img_res).uint8_norm()
    save_img_file(img_res, os.path.join(os.path.dirname(fname), str(i)+'.png'))

Citation

@misc{hahne2020plenopticam,
      title={PlenoptiCam v1.0: A light-field imaging framework},
      author={Christopher Hahne and Amar Aggoun},
      year={2020},
      eprint={2010.11687},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Author

Christopher Hahne

You might also like...
Spatial color quantization in Rust
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Rendering color and depth images for ShapeNet models.
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Implementation of GGB color space
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

An end-to-end image translation model with weight-map for color constancy
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Comments
  • Color-matcher batch processing

    Color-matcher batch processing

    I've just discovered color-matcher and find it potentially very useful for preprocessing histopathological datasets for deep learning. I can't, however, find a way to use it in batch mode - that is - is there any way to load more than one source image and/or more than one target image to process larger image datasets in batch?

    opened by SahPet 4
  • Doc suggests pip3 for install, Anaconda seems to work with pip only

    Doc suggests pip3 for install, Anaconda seems to work with pip only

    I'm using Anaconda (Conda 4.9.2) and used the documentation's suggested pip3 install procedure for color-matcher, but I couldn't run it from the command prompt. However, when I installed it via pip (just pip) it worked fine.

    I ain't entirely sure if this fella got Python 3.8 and Python 2.7 both in there, but somehow I can only get it to run by entering only color-matcher in the command line after installing through pip as opposed to pip3.

    Might need an extra line in the documentation saying do this if you're using Anaconda or Python 2.x or something, I ain't entirely sure of what's going on behind the scenes really.

    opened by torridgristle 1
  • Rendering videos

    Rendering videos

    hi thanks for this great piece of code.

    I am doing some tests on videos, is there a specific mode to ensure temporal consistency for video rendering?

    I have tried a few image by image processing, and the results are subject to flickering, especially when there are strong intense areas, even small (the blinking crosswalk light in the below examples)

    thanks

    https://user-images.githubusercontent.com/29961693/178616708-e5b7fd6d-b2aa-4dd1-abe8-2908267621b5.mp4

    https://user-images.githubusercontent.com/29961693/178616722-381ff433-ebaa-423d-801b-a518816068c3.mp4

    opened by Tetsujinfr 1
  • [ Feature Request ] CLUT Output

    [ Feature Request ] CLUT Output

    The ability to save a CLUT of the color transformation would be useful for applying the transformation to other scenes / videos / games, and for tweaking the transformation with other tools for artistic purposes with color-matcher's output as the starting point.

    Look I got the early morning lightheadedness and I wanna gush about this program, this has saved me such a hassle trying to white balance the most fucked up of photos with purple skin, absolutely marvelous. Software intended for auto white-balance just made em all green, but this matched it to a collage of similar faces in better lighting and damn if it isn't just the best outcome I could imagine for the material. I could overhaul an entire dataset and augment the shit out of it if I wanted. This is baller.

    feature-request 
    opened by torridgristle 6
Releases(v0.5.0)
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022