PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Overview

Learning Character-Agnostic Motion for Motion Retargeting in 2D

We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019.

Prerequisites

  • Linux
  • CPU or NVIDIA GPU + CUDA CuDNN
  • Python 3
  • PyTorch 0.4

Getting Started

Installation

  • Clone this repo

    git clone https://github.com/ChrisWu1997/2D-Motion-Retargeting.git
    cd 2D-Motion-Retargeting
  • Install dependencies

    pip install -r requirements.txt

    Note that the imageio package requires ffmepg and there are several options to install ffmepg. For those who are using anaconda, run conda install ffmpeg -c conda-forge is the simplest way.

Run demo examples

We provide pretrained models and several video examples, along with their OpenPose outputs. After run, the results (final joint positions + videos) will be saved in the output folder.

  • Run the full model to combine motion, skeleton, view angle from three input videos:

    python predict.py -n full --model_path ./model/pretrained_full.pth -v1 ./examples/tall_man -v2 ./examples/small_man -v3 ./examples/workout_march -h1 720 -w1 720 -h2 720 -w2 720 -h3 720 -w3 720 -o ./outputs/full-demo --max_length 120

    Results will be saved in ./outputs/full-demo:

  • Run the full model to do interpolation between two input videos. For example, to keep body attribute unchanged, and interpolate in motion and view axis:

    python interpolate.py --model_path ./model/pretrained_full.pth -v1 ./examples/model -v2 ./examples/tall_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/interpolate-demo.mp4 --keep_attr body --form matrix --nr_sample 5 --max_length 120

    You will get a matrix of videos that demonstrates the interpolation results:

  • Run two encoder model to transfer motion and skeleton between two input videos:

    python predict.py -n skeleton --model_path ./model/pretrained_skeleton.pth -v1 ./examples/tall_man -v2 ./examples/small_man -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/skeleton-demo --max_length 120
  • Run two encoder model to transfer motion and view angle between two input videos:

    python predict.py -n view --model_path ./model/pretrained_view.pth -v1 ./examples/tall_man -v2 ./examples/model -h1 720 -w1 720 -h2 720 -w2 720 -o ./outputs/view-demo --max_length 120

Use your own videos

To run our models with your own videos, you first need to use OpenPose to extract the 2D joint positions from the video, then use the resulting JSON files as described in the demo examples.

Train from scratch

Prepare Data

  • Download Mixamo Data

    For the sake of convenience, we pack the Mixamo Data that we use. To download it, see Google Drive or Baidu Drive (8jq3). After downloading, extract it into ./mixamo_data.

    NOTE: Our Mixamo dataset only covers a part of the whole collections provided by the Mixamo website. If you want to collect Mixamo Data by yourself, you can follow the our guide here. The downloaded files are of fbx format, to convert it into json/npy (joints 3d position), you can use our script dataset/fbx2joints3d.py(requires blender 2.79).

  • Preprocess the downloaded data

    python ./dataset/preprocess.py
    

Train

  • Train the full model (with three encoders) on GPU:

    python train.py -n full -g 0
    

    Further more, you can select which structure to train and which loss to use through command line arguments:

    -n : Which structure to train. 'skeleton' / 'view' for 2 encoders system to transfer skeleton/view. 'full' for full system with 3 encoders.

    —disable_triplet: To disable triplet loss. By default, triplet loss is used.

    —use_footvel_loss: To use foot velocity loss.

Citation

If you use this code for your research, please cite our paper:

@article{aberman2019learning,
  author = {Aberman, Kfir and Wu, Rundi and Lischinski, Dani and Chen, Baoquan and Cohen-Or, Daniel},
  title = {Learning Character-Agnostic Motion for Motion Retargeting in 2D},
  journal = {ACM Transactions on Graphics (TOG)},
  volume = {38},
  number = {4},
  pages = {75},
  year = {2019},
  publisher = {ACM}
}

Owner
Rundi Wu
PhD student at Columbia University
Rundi Wu
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022