High-fidelity 3D Model Compression based on Key Spheres

Overview

High-fidelity 3D Model Compression based on Key Spheres

This repository contains the implementation of the paper:

Yuanzhan Li, Yuqi Liu, Yujie Lu, Siyu Zhang, Shen Cai∗, and Yanting Zhang. High-fidelity 3D Model Compression based on Key Spheres. Accepted by Data Compression Conference (DCC) 2022 as a full paper. Paper pdf

Methodology

Training a specific network for each 3D model to predict the signed distance function (SDF), which individually embeds its shape, can realize compressed representation and reconstruction of objects by storing fewer network (and possibly latent) parameters. However, it is difficult for the state-of-the-art methods NI [1] and NGLOD [2] to properly reconstruct complex objects with fewer network parameters. The methodology we adopt is to utilize explicit key spheres [3] as network input to reduce the difficulty of fitting global and local shapes. By inputting the spatial information ofmultiple spheres which imply rough shapes (SDF) of an object, the proposed method can significantly improve the reconstruction accuracy with a negligible storage cost.An example is shown in Fig. 1. Compared to the previous works, our method achieves the high-fidelity and high-compression coding and reconstruction for most of 3D objects in the test dataset. image

As key spheres imply the rough shape and can impose constraints on local SDF values, the fitting difficulty of network is significantly reduced. Fig. 2 shows fitting SDF comparison of three methods to a 2D bunny image. image

[1] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson, “On the effectiveness ofweight-encoded neural implicit 3d shapes,” arXiv:2009.09808, 2020.

[2] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler, “Neural geometric level of detail: real-time rendering with implicit 3d shapes,” in CVPR, 2021.

[3] Siyu Zhang, Hui Cao, Yuqi Liu, Shen Cai, Yanting Zhang, Yuanzhan Li, and Xiaoyu Chi, “SN-Graph: a minimalist 3d object representation for classification,” in ICME, 2021.

[4] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and E. Puppo, “Practical quad mesh simplification,” CGF, 29(2), 407–418, 2010.

Network

In order to make a fair comparison with NI and NGLOD respectively, this 29D point feature can be extracted in direct and latent ways based on key spheres. The direct point feature extraction (DPFE, see the upper branch of Fig. 3) only uses a single-layer MLP (4∗29) to upgrade the 4D input of each key sphere to a 29D feature. The latent point feature extraction (LPFE, see the lower branch in Fig. 3) is similar to the latent feature of grid points in NGLOD. The 29D sphere feature vector is obtained by training, which is stored in advance. image

Experiment

image image

Results

For a mesh model, we provide the corresponding network model using DPLE branch. These models are trained with a 6∗32 MLP and 128 key spheres as input by default. The network model files are placed at ./results/models/, and their naming rules are a_b_c_d.pth, where a is the number of key spheres, b and c are the number and size of MLP layers, and d is the data name. If b and c are omitted, 6∗32 MLP is used.

Some reconstructed mesh models are also provided. They are reconstructed using the 128-resolution marching cube algorithm. You can find them in ./results/meshes/. Three models are shown below. More reconstructed results in Thingi32 dataset can be seen in Release files. image image image

Dataset

We use ShapeNet and Thingi10k datasets, both of which are available from their official website. Thingi32 is composed of 32 simple shapes in Thingi10K. ShapeNet150 contains 150 shapes in the ShapeNet dataset.

ShapeNet

You can download them at https://shapenet.org/download/shapenetcore

Thingi10k

You can download them at https://ten-thousand-models.appspot.com/

Thingi32 and ShapeNet150

You can check their name at https://github.com/nv-tlabs/nglod/issues/4

Getting started

Ubuntu and CUDA version

We verified that it worked on ubuntu18.04 cuda10.2

Python dependencies

The easiest way to get started is to create a virtual Python 3.6 environment via our environment.yml:

conda env create -f environment.yml
conda activate torch_over
cd ./submodules/miniball
python setup.py install

Training

python train_series.py

Evaluation

python eval.py

If you want to generate a reconstructed mesh through the MC algorithm

python modelmesher.py 

Explanation

  1. NeuralImplicit.py corresponds to the first architecture in the paper, NeuralImplicit_1.py corresponds to the second architecture.
  2. We provide sphere files for thingi10k objects at ./sphere/thingi10kSphere/.
  3. If you want to generate key spheres for your own models, check out https://github.com/cscvlab/SN-Graph

Third-Party Libraries

This code includes code derived from 3 third-party libraries

https://github.com/nv-tlabs/nglod https://github.com/u2ni/ICML2021

License

This project is licensed under the terms of the MIT license (see LICENSE for details).

You might also like...
A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

 SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

MMRazor: a model compression toolkit for model slimming and AutoML
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

 From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.

 UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

Releases(thing32)
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022